On non-abelian extensions of 3-Leibniz algebras

Nanyan XU , Yunhe SHENG

Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 57 -74.

PDF (573KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 57 -74. DOI: 10.3868/s140-DDD-024-0006-x
RESEARCH ARTICLE

On non-abelian extensions of 3-Leibniz algebras

Author information +
History +
PDF (573KB)

Abstract

In this paper, we study non-abelian extensions of 3-Leibniz algebras through Maurer-Cartan elements. We construct a differential graded Lie algebra and prove that there is a one-to-one correspondence between the isomorphism classes of non-abelian extensions in 3-Leibniz algebras and the equivalence classes of Maurer-Cartan elements in this differential graded Lie algebra. And also the Leibniz algebra structure on the space of fundamental elements of 3-Leibniz algebras is analyzed. It is proved that the non-abelian extension of 3-Leibniz algebras induce the non-abelian extensions of Leibniz algebras.

Keywords

3-Leibniz algebras / Leibniz algebra / non-abelian extension / Maurer-Cartan element

Cite this article

Download citation ▾
Nanyan XU, Yunhe SHENG. On non-abelian extensions of 3-Leibniz algebras. Front. Math. China, 2024, 19(2): 57-74 DOI:10.3868/s140-DDD-024-0006-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albeverio S, Ayupov Sh A, Omirov B A, Turdibaev R M. Cartan subalgebras of Leibniz n-algebras. Comm. Algebra 2009; 37(6): 2080–2096

[2]

Bagger J, Lambert N. Comments on multiple M2-branes. J High Energy Phys 2008; 2008(2): 105

[3]

Bagger J, Lambert N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys Rev D 2008; 77(6): 065008

[4]

Bai R P, Wu W Q, Li Y, Li Z H. Module extensions of 3-Lie algebras. Linear Multilinear Algebra 2012; 60(4): 433–447

[5]

Bai R P, Zhang J. The classification of nilpotent Leibniz 3-algebras. Acta Math Sci Ser B (Engl Ed) 2011; 31(5): 1997–2006

[6]

Camacho L M, Casas J M, Gómez J R, Ladra M, Omirov B A. On nilpotent Leibniz n-algebras. J Algebra Appl 2012; 11(3): 1250062

[7]

Casas J M. A non-abelian tensor product and universal central extension of Leibniz n-algebra. Bull Belg Math Soc Simon Stevin 2004; 11(2): 259–270

[8]

Casas J M. Homology with trivial coefficients of Leibniz n-algebras. Comm Algebra 2003; 31(3): 1377–1386

[9]

Casas J M, Khmaladze E, Ladra M. Crossed modules for Leibniz n-algebras. Forum Math 2008; 20(5): 841–858

[10]

Casas J M, Khmaladze E, Ladra M. On solvability and nilpotency of Leibniz n-algebras. Comm Algebra 2006; 34(8): 2769–2780

[11]

Casas J M, Loday J-L, Pirashvili T. Leibniz n-algebras. Forum Math 2002; 14(2): 189–207

[12]

Daletskii Y L, Takhtajan L A. Leibniz and Lie algebra structures for Nambu algebra. Lett Math Phys 1997; 39(2): 127–141

[13]

Filippov V T. n-Lie algebras. Sibirsk Mat Zh 1985; 26(6): 126–140,191

[14]

Guan A, Lazarev A, Sheng Y H, Tang R. Review of deformation theory I: concrete formulas for deformations of algebraic structures. Adv Math (China) 2020; 49(3): 257–277

[15]

Guan B L, Chen LY. Properties of restricted Leibniz algebras. Adv Math (China) 2014; 43(5): 676–682

[16]

Liu J F, Makhlouf A Sheng Y H. A new approach to representations of 3-Lie algebras and Abelian extensions. Algebr Represent Theory 2017; 20(6): 1415–1431

[17]

Liu J F, Sheng Y H, Wang Q. On non-abelian extensions of Leibniz algebras. Comm Algebra 2018; 46(2): 574–587

[18]

Loday J-L, Pirashvili T. Universal enveloping algebras of Leibniz algebras and (∞)homology. Math Ann 1993; 296(1): 139–158

[19]

Nambu Y. Generalized Hamiltonian dynamics. Phys Rev D (3) 1973; 7(8): 2405–2412

[20]

Rotkiewicz M. Cohomology ring of n-Lie algebras. Extracta Math 2005; 20(3): 219–232

[21]

Sheng Y H, Tang R. Symplectic, product and complex structures on 3-Lie algebras. J Algebra 2018; 508: 256–300

[22]

Song L N, Makhlouf A, Tang R. On non-abelian extensions of 3-Lie algebras. Commun Theor Phys (Beijing) 2018; 69(4): 347–356

[23]

Takhtajan L. On foundation of the generalized Nambu mechanics. Comm Math Phys 1994; 160(2): 295–315

[24]

Xu S R. Cohomology, derivations and abelian extensions of 3-Lie algebras. J Algebra Appl 2019; 18(7): 1950130

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (573KB)

521

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/