Uniqueness and stability of the solution for strongly pseudomonotone variational inequalities in Banach spaces

Guoji TANG , Yanshu LI

Front. Math. China ›› 2025, Vol. 20 ›› Issue (3) : 157 -167.

PDF (473KB)
Front. Math. China ›› 2025, Vol. 20 ›› Issue (3) : 157 -167. DOI: 10.3868/s140-DDD-025-0013-x
RESEARCH ARTICLE

Uniqueness and stability of the solution for strongly pseudomonotone variational inequalities in Banach spaces

Author information +
History +
PDF (473KB)

Abstract

In this paper, we prove an existence and uniqueness theorem of the solution for strongly pseudomonotone variational inequalities in reflexive Banach spaces. Based on this result, and investigate the stability behavior of the perturbed variational inequalities. Moreover, we obtain an existence theorem of solutions for strongly quasimonotone variational inequalities in finite dimensional spaces.

Keywords

Variational inequality / strong pseudomonotonicity / strong quasimonotonicity / existence and uniqueness / stability

Cite this article

Download citation ▾
Guoji TANG, Yanshu LI. Uniqueness and stability of the solution for strongly pseudomonotone variational inequalities in Banach spaces. Front. Math. China, 2025, 20(3): 157-167 DOI:10.3868/s140-DDD-025-0013-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chang S.S., Lee, B.S. , Chen, Y.Q. . Variational inequalities for monotone operators in nonreflexive Banach spaces. Appl. Math. Lett. 1995; 8(6): 29–34

[2]

FacchineiF. , Pang, J.S., Finite-dimensional Variational Inequalities and Complementarity Problems, New York: Springer-Verlag, 2003

[3]

Hadjisavvas N. , Schaible, S. . Quasimonotone variational inequalities in Banach spaces. J. Optim. Theory Appl. 1996; 90(1): 95–111

[4]

Kien B.T., Yao, J.C. , Yen, N.D. . On the solution existence pseudomonotone variational inequalities. J. Global Optim. 2008; 41: 135–145

[5]

Kim D.S., Vuong, P.T. , Khanh, P.D. . Qualitative properties of strongly pseudomonotone variational inequalities. Optim. Lett. 2016; 10: 1669–1679

[6]

Lee B.S. , Lee, G.M. . Variational inequalities for (η,θ)-pseudomonotone operators in nonreflexive Banach spaces. Appl. Math. Lett. 1999; 12: 13–17

[7]

Li F.L. , He, Y.R. . Solvability of a perturbed variational inequality. Pac. J. Optim. 2014; 10: 105–111

[8]

NagurneyA., Network Economics: A Variational Inequality Approach, Dordrecht: Kluwer Academic Publishers, 1999

[9]

Tang G.J. . and Wang, X., An extragradient-type method for variational inequalities on Banach Spaces. Acta Math. Sin. Chin. Ser. 2016; 59(2): 187–198

[10]

Verma R.U. . Variational inequalities involving strongly pseudomonotone hemicontinuous mappings in non-reflexive Banach spaces. Appl. Math. Lett. 1998; 11(2): 41–43

[11]

Watson P.J. . Variational inequalities in nonreflexive Banach spaces. Appl. Math. Lett. 1997; 10(2): 45–48

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (473KB)

229

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/