Convergence rate of extremes of normal triangular arrays

Xinling LIU , Shouquan CHEN

Front. Math. China ›› 2025, Vol. 20 ›› Issue (2) : 77 -89.

PDF (1798KB)
Front. Math. China ›› 2025, Vol. 20 ›› Issue (2) : 77 -89. DOI: 10.3868/s140-DDD-025-0007-x
RESEARCH ARTICLE

Convergence rate of extremes of normal triangular arrays

Author information +
History +
PDF (1798KB)

Abstract

In this paper, we mainly discuss the convergence rate of the limit distribution of a class of normal stationary triangular arrays, and point out that the convergence rate of this triangular array is not faster than that of the extremes of random variables in the i.i.d. case.

Graphical abstract

Keywords

Stationary normal sequence / extreme index / convergence rate

Cite this article

Download citation ▾
Xinling LIU, Shouquan CHEN. Convergence rate of extremes of normal triangular arrays. Front. Math. China, 2025, 20(2): 77-89 DOI:10.3868/s140-DDD-025-0007-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berman S.. Limit theorems for the maximum term in stationary sequences. Ann. Stat. 1964; 35: 502–516

[2]

Chen S.Q. , Huang, J.W.. Rates of convergence for asymmetric normal distribution. Stat. Probab. Lett. 2014; 84: 40–47

[3]

Hsing T., Hüsler, J. , Leadbetter, M.R.. On the exceedance point process for a stationary sequence. Probab. Theory. Rel. 1988; 78: 97–112

[4]

Hsing T., Hüsler, J. , Reiss, R.-D.. Maxima of normal random vectors: Between independence and complete dependence. Stat. Probab. Lett. 1989; 7: 283–286

[5]

Hsing T., Hüsler, J. , Reiss, R.-D.. The extremes of a triangular array of normal random variables. Ann. Appl. Probab. 1996; 6(2): 671–686

[6]

LeadbetterM.R., Lindgren, G. , Rootzen, H., Extremes and Related Properties of Random Sequences and Processes, New York: Springer-Verlag, 1983

[7]

Liao X., Peng, Z.X., Nadarajah, S. , Wang, X.Q.. Rates of convergence of extremes from skew-normal samples. Stat. Probab. Lett. 2014; 84: 158–168

[8]

Mittal Y. , Ylvisaker, D.. Limit distributions for the maxima of stationary Gaussian processes. Stoch. Proc. Appl. 1975; 3: 1–18

[9]

O’Brian . Extreme values for stationary and Markov sequences. Ann. Probab. 1987; 15: 281–291

[10]

Rootźen . The rate of convergence of extremes of stationary normal sequences. Adv. Appl. Probab. 1983; 15(1): 54–58

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (1798KB)

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/