Maps completely preserving indefinite Jordan 1-†-zero product

Li HUANG , Yu ZHANG

Front. Math. China ›› 2025, Vol. 20 ›› Issue (2) : 55 -64.

PDF (490KB)
Front. Math. China ›› 2025, Vol. 20 ›› Issue (2) : 55 -64. DOI: 10.3868/s140-DDD-025-0005-x
RESEARCH ARTICLE

Maps completely preserving indefinite Jordan 1-†-zero product

Author information +
History +
PDF (490KB)

Abstract

By characterizing the bijections preserving orthogonality of idempotents in both directions on the infinite dimensional complete indefinite inner product spaces, we obtain the concrete form of surjective maps completely preserving indefinite Jordan 1-†-zero product between †-standard operator algebras. Our results show that such maps are nonzero constant multiple of isomorphisms or conjugate isomorphisms.

Keywords

†-standard operator algebras / complete preserving problem / indefinite inner product spaces / indefinite Jordan 1-†-zero product

Cite this article

Download citation ▾
Li HUANG, Yu ZHANG. Maps completely preserving indefinite Jordan 1-†-zero product. Front. Math. China, 2025, 20(2): 55-64 DOI:10.3868/s140-DDD-025-0005-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BognárJ., Indefinite Inner Product Spaces, New York: Springer-Verlag, 1974

[2]

Bracci L., Morchio, G. , Strocchi, F.. Wigner’s theorem on symmetries in indefinite metric spaces. Comm. Math. Phys. 1975; 41: 289–299

[3]

Cui J.L. , Hou, J.C.. Linear maps preserving elements annihilated by the polynomial XYYX. Studia Math. 2006; 174(2): 183–199

[4]

Cui J.L., Hou, J.C. , Park, C.-G.. Indefinite orthogonality preserving additive maps. Arch. Math. (Basel) 2004; 83(6): 548–557

[5]

Dong G.F. , Gao, H.S.. Mappings preserving the idempotency of †-product of operators. J. Taiyuan Norm. Univ. (Nat. Sci. Ed.) 2013; 12(2): 61–65

[6]

Hou J.C. , Huang, L.. Characterizing isomorphisms in terms of completely preserving invertibility or spectrum. J. Math. Anal. Appl. 2009; 359(1): 81–87

[7]

Hou J.C. , Huang, L.. Maps completely preserving idempotents and maps completely preserving square-zero operators. Israel J. Math. 2010; 176: 363–380

[8]

Hou J.C. , Zhang, X.L.. Completely trace-rank preserving maps on finite von Neumann algebras. J. Taiyuan Univ. Technol. 2012; 43(3): 269–275

[9]

Huang L. , Hou, J.C.. Maps completely preserving invertibility or zero divisors on standard operator algebras. J. Shanxi Univ. (Nat. Sci. Ed.) 2009; 32(1): 5–8

[10]

Huang L. , Hou, J.C.. Maps completely preserving spectral functions. Linear Algebra Appl. 2011; 435(11): 2756–2765

[11]

Huang L. , Liu, Y.X.. Maps completely preserving commutativity and maps completely preserving Jordan zero-product. Linear Algebra Appl. 2014; 462: 233–249

[12]

XiaD.X. , Yan, S.Z., Spectrum Theory of Linear Operators II, Operator Theory in Indefinite Metric Spaces, Beijing: Science Press, 1987 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (490KB)

783

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/