A survey on the Weinstein conjecture

Yanqiao DING

Front. Math. China ›› 2025, Vol. 20 ›› Issue (1) : 1 -15.

PDF (482KB)
Front. Math. China ›› 2025, Vol. 20 ›› Issue (1) : 1 -15. DOI: 10.3868/s140-DDD-025-0003-x
SURVEY ARTICLE

A survey on the Weinstein conjecture

Author information +
History +
PDF (482KB)

Abstract

The Weinstein conjecture predicts that there is at least one periodic orbit for every compact contact hypersurface in a symplectic manifold, which turns out an important research direction in symplectic topology and contact topology. According to the methods of the research, this paper surveys the study on the Weinstein conjecture using the variational method and the pseudo-holomorphic curves method.

Keywords

Weinstein conjecture / periodic orbit / contact manifold / J-holomorphic curves / Reeb flow

Cite this article

Download citation ▾
Yanqiao DING. A survey on the Weinstein conjecture. Front. Math. China, 2025, 20(1): 1-15 DOI:10.3868/s140-DDD-025-0003-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbas C., Cieliebak, K. , Hofer, H.. The Weinstein conjecture for planar contact structures in dimension three. Comment. Math. Helv. 2005; 80(4): 771–793

[2]

Albers P., Fuchs, U. , Merry, W.J.. Orderability and the Weinstein conjecture. Compos. Math. 2015; 151(12): 2251–2272

[3]

Albers P. , Hofer, H.. On the Weinstein conjecture in higher dimensions. Comment. Math. Helv. 2009; 84(2): 429–436

[4]

BenedettiG., An approach to the Weinstein conjecture via J-holomorphic curves, Master Degree Thesis, Pisa: Univ. Pisa, 2011

[5]

Borman M.S., Eliashberg, Y. , Murphy, E.. Existence and classification of overtwisted contact structures in all dimensions. Acta Math. 2015; 215(2): 281–361

[6]

DingY.Q., Research on Weinstein conjecture and blow-up formula of Welschinger invariants, Ph.D. Thesis, Guangzhou: Sun Yat-sen Univ., 2016 (in Chinese)

[7]

Ding Y.Q. , Hu, J.X.. The Weinstein conjecture in product of symplectic manifolds. Acta Math. Sci. Ser. B Engl. Ed. 2016; 36(5): 1245–1261

[8]

Dörner . Open books and the Weinstein conjecture. Q. J. Math. 2014; 65(3): 869–885

[9]

Ekeland I. , Hofer, H.. Symplectic topology and Hamiltonian dynamics. Math. Z. 1989; 200(3): 355–378

[10]

Ekeland I. , Hofer, H.. Symplectic topology and Hamiltonian dynamics II. Math. Z. 1990; 203(4): 553–567

[11]

Eliashberg Y.. Classification of overtwisted contact structures on 3-manifolds. Invent. Math. 1989; 98(3): 623–637

[12]

Eliashberg Y.. Contact 3-manifolds twenty years since J. Martinet’s work. Ann. Inst. Fourier (Grenoble) 1992; 42(1/2): 165–192

[13]

Eliashberg Y. , Polterovich, L.. Partially ordered groups and geometry of contact transformations. Geom. Funct. Anal. 2000; 10(6): 1448–1476

[14]

Floer A., Hofer, H. , Viterbo, C.. The Weinstein conjecture in P×Cl. Math. Z. 1990; 203(3): 469–482

[15]

Geiges H. , Zehmisch, K.. Symplectic cobordisms and the strong Weinstein conjecture. Math. Proc. Cambridge Philos. Soc. 2012; 153(2): 261–279

[16]

Geiges H. , Zehmisch, K., The Weinstein conjecture for connected sums.. Int. Math. Res. Not. IMRN. 2016 2016; (2): 325–342

[17]

Ginzburg V.L. , Guorel, B.Z.. A C2 -smooth counterexample to the Hamiltonian Seifert conjecture in R4. Ann. of Math. (2) 2003; 158(3): 953–976

[18]

Gromov M.. Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 1985; 82(2): 307–347

[19]

HermanM., Examples of compact hypersurfaces in R2P, 2P ≥ 6, with no periodic orbits, In: Hamiltonian Systems with Three or More Degrees of Freedom (Simó, C. ed.), Dordrecht: Springer, 1999, 126

[20]

Hofer H.. Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three. Invent. Math. 1993; 114(3): 515–563

[21]

Hofer H. , Viterbo, C.. The Weinstein conjecture in cotangent bundles and related results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1988; 15(3): 411–445

[22]

Hofer H. , Viterbo, C.. The Weinstein conjecture in the presence of holomorphic spheres. Comm. Pure Appl. Math. 1992; 45(5): 583–622

[23]

Hofer H. , Zehnder, E.. Periodic solutions on hypersurfaces and a result by C. Viterbo. Invent. Math. 1987; 90(1): 1–9

[24]

HoferH. , Zehnder, E., A new capacity for symplectic manifolds, In: Analysis, et cetera (Rabinowitz, P. and Zehnder, E. eds.), Boston, MA: Academic Press, 1990, 405−428

[25]

HoferH. , Zehnder, E., Symplectic Invariants and Hamiltonian Dynamics, Basel: Birkhäuser, 1994

[26]

Hyvrier C.. A product formula for Gromov-Witten invariants. J. Symplectic Geom. 2012; 10(2): 247–324

[27]

Hyvrier C.. On symplectic uniruling of Hamiltonian fibrations. Algebr. Geom. Topol. 2012; 12(2): 1145–1163

[28]

Kerman E.. New smooth counterexamples to the Hamiltonian Seifert conjecture. J. Symplectic Geom. 2002; 1(2): 253–267

[29]

Liu G. , Tian, G.. Weinstein conjecture and GW-invariants. Commun. Contemp. Math. 2000; 2(4): 405–459

[30]

Lu G.C.. The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres. Kyushu J. Math. 1998; 52(2): 331–351

[31]

Lu G.C.. The Weinstein conjecture in the uniruled manifolds. Math. Res. Lett. 2000; 7(4): 383–387

[32]

LuG.C., Finiteness of the Hofer-Zehnder capacity of neighborhoods of symplectic submanifolds, Int. Math. Res. Not., 2006, Art. ID 76520, 33 pp

[33]

McDuffD. , Salamon, D., Introduction to Symplectic Topology, Oxford: Oxford Univ. Press, 1995

[34]

McDuffD. , Salamon, D., J -holomorphic Curves and Symplectic Topology, American Mathematical Society Colloquium Publications, 52, Providence, RI: AMS, 2004

[35]

Niederkrüger . The plastikstufe—a generalization of the overtwisted disk to higher dimensions. Algebr. Geom. Topol. 2006; 6: 2473–2508

[36]

Niederkruüger . The Weinstein conjecture in the presence of submanifolds having a Legendrian foliation. J. Topol. Anal. 2011; 3(4): 405–421

[37]

Pasquotto F.. A short history of the Weinstein conjecture. Jahresber. Dtsch. Math.-Ver. 2012; 114(3): 119–130

[38]

Rabinowitz P.H.. Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 1978; 31(2): 157–184

[39]

Suhr S. , Zehmisch, K., Polyfolds, cobordisms.. and the strong Weinstein conjecture. Adv. Math. 2017; 305: 1250–1267

[40]

Taubes C.H.. The Seiberg-Witten equations and the Weinstein conjecture. Geom. Topol. 2007; 11: 2117–2202

[41]

Viterbo C.. A proof of Weinstein’s conjecture in R2n. Ann. Inst. H. Poincare Anal. Non Linéaire 1987; 4(4): 337–356

[42]

Weinstein A.. Periodic orbits for convex Hamiltonian systems. Ann. of Math. (2) 1978; 108(3): 507–518

[43]

Weinstein A.. On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differential Equations 1979; 33(3): 353–358

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (482KB)

406

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/