Normal edge-transitive Cayley graphs on a class of non-abelian groups

Nuo LI , Qi DENG , Hua ZHANG

Front. Math. China ›› 2024, Vol. 19 ›› Issue (4) : 215 -227.

PDF (617KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (4) : 215 -227. DOI: 10.3868/s140-DDD-024-0013-x
RESEARCH ARTICLE

Normal edge-transitive Cayley graphs on a class of non-abelian groups

Author information +
History +
PDF (617KB)

Abstract

Let Γ=Cay(G, S) be the Cayley graph of a group G with respect to its subset S. The graph Γ is said to be normal edge-transitive if the normalizer of G in the automorphism group Aut(Γ) of Γ acts transitively on the edge set of Γ. In this paper, we study the structure of normal edge-transitive Cayley graphs on a class of non-abelian groups with order 2p2 (p refers to an odd prime). The structure and automorphism groups of the non-abelian groups are first presented, and then the tetravalent normal edge-transitive Cayley graphs on such groups are investigated. Finally, the normal edge-transitive Cayley graphs on group G are characterized and classified.

Keywords

Cayley graph / symmetric graph / normal edge-transitivity

Cite this article

Download citation ▾
Nuo LI, Qi DENG, Hua ZHANG. Normal edge-transitive Cayley graphs on a class of non-abelian groups. Front. Math. China, 2024, 19(4): 215-227 DOI:10.3868/s140-DDD-024-0013-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alaeiyan M. On normal edge-transitive Cayley graphs of some Abelian groups. Southeast Asian Bull Math 2009; 33(1): 13–19

[2]

BiggsN. Algebraic Graph Theory, 2nd ed. Cambridge Mathematical Library. Cambridge: Cambridge University Press, 1993

[3]

Corr B P, Praeger C E. Normal edge-transitive Cayley graphs of Frobenius groups. J Algebraic Combin 2015; 42(3): 803–827

[4]

Cui L, Zhou J X, Ghasemi M, Talebi A A. A classification of tetravalent non-normal Cayley graphs of order twice a prime square. J Algebraic Combin 2021; 53(3): 663–676

[5]

Darafsheh M R, Assari A. Normal edge-transitive Cayley graphs on non-abelian groups of order 4p, where p is a prime number. Sci China Math 2013; 56(1): 213–219

[6]

DixonJ DMortimerB. Permutation Groups, Grad. Texts in Math, Vol 163. New York: Springer-Verlag, 1996

[7]

Fang X G, Li C H, Xu M Y. On edge-transitive Cayley graphs of valency four. European J Combin 2004; 25(7): 1107–1116

[8]

Godsil C D. On the full automorphism group of a graph. Combinatorica 1981; 1(3): 243–256

[9]

GodsilC DRoyleG. Algebraic Graph Theory. Grad Texts in Math, Vol 207. New York: Springer-Verlag, 2001

[10]

Li C H, Lu Z P, Zhang H. Tetravalent edge-transitive Cayley graphs with odd number of vertices. J Combin Theory Ser B 2006; 96(1): 164–181

[11]

Praeger C E. Finite normal edge-transitive Cayley graphs. Bull Austral Math Soc 1999; 60(2): 207–220

[12]

Sharifi H, Darafsheh M R. On tetravalent normal edge-transitive Cayley graphs on the modular group. Turkish J Math 2017; 41(5): 1308–1312

[13]

Talebi A A. Some normal edge-transitive Cayley graphs on dihedral groups. The Journal of Mathematics and Computer Science 2011; 2(3): 448–452

[14]

Xu M Y. Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math 1998; 182(1/2/3): 309–319

[15]

XuM Y. Introduction to Finite Groups. Vol 1. Beijing: Science Press, 1999 (in Chinese)

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (617KB)

440

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/