A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities

Shuaishuai XUE

Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 75-100.

PDF(636 KB)
PDF(636 KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 75-100. DOI: 10.3868/s140-DDD-024-0007-x
RESEARCH ARTICLE

A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities

Author information +
History +

Abstract

In this paper, we prove an infinite dimensional KAM theorem and apply it to study 2-dimensional nonlinear Schrödinger equations with different large forcing terms and (2p + 1)-nonlinearities

      iutΔu+φ1(ω¯1t)u+φ2(ω¯2t)|u|2pu=0,tR,xT2

under periodic boundary conditions. As a result, the existence of a Whitney smooth family of small-amplitude reducible quasi-periodic solutions is obtained.

Keywords

Schrödinger equation / reducible KAM tori / small divisor / quasi-periodic solution

Cite this article

Download citation ▾
Shuaishuai XUE. A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities. Front. Math. China, 2024, 19(2): 75‒100 https://doi.org/10.3868/s140-DDD-024-0007-x

E-mail: ssx@nau.edu.cn

References

[1]
Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 1999; 12(4): 823–850
[2]
Bourgain J. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat Math Res Notices 1994; 1994(11): 475–497
[3]
Bourgain J. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann of Math (2) 1998; 148(2): 363–439
[4]
Bourgain J. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom Funct Anal 1995; 5(4): 629–639
[5]
BourgainJ. Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, Vol 46. Providence, RI: AMS, 1999
[6]
Bourgain J. On diffusion in high-dimensional Hamiltonian systems and PDE. J Anal Math 2000; 80: 1–35
[7]
BourgainJ. Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, Vol 158. Princeton, NJ: Princeton University Press, 2005
[8]
Bourgain J, Wang W M. Quasi-periodic solutions of nonlinear random Schrödinger equations. J Eur Math Soc (JEMS) 2008; 10(1): 1–45
[9]
Chierchia L, You J G. KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm Math Phys 2000; 211(2): 497–525
[10]
Craig W, Wayne C E. Newton’s method and periodic solutions of nonlinear wave equations. Comm Pure Appl Math. 1993; 46(11): 1409–1498
[11]
Eliasson L H. Perturbations of stable invariant tori for Hamiltonian systems. Ann Scuola Norm Sup Pisa Cl Sci (4) 1988; 15(1): 115–147
[12]
EliassonL HKuksinS B. KAM for the non-linear Schrödinger equation—a short presentation. In: Holomorphic Dynamics and Renormalization, Fields Inst Commun, Vol 53. Providence, RI: AMS, 2008, 361–376
[13]
Geng J S, Xu X D, You J G. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv Math 2011; 226(6): 5361–5402
[14]
Geng J S, Xue S S. Invariant tori for two dimensional nonlinear Schrödinger equations with large forcing terms. J Math Phys 2019; 60(5): 052703
[15]
Geng J S, Xue S S. Reducible KAM tori for two-dimensional quintic Schrödinger equations. Sci Sin Math 2021; 51: 457–498
[16]
KappelerTPöschelJ. KdV & KAM, A Series of Modern Surveys in Mathematics, Vol 45. Berlin: Springer-Verlag, 2003
[17]
Kuksin S B. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct Anal Appl 1987; 21: 192–205
[18]
KuksinS B. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, Vol 1556. Berlin: Springer-Verlag, 1993
[19]
Kuksin S B, Pöschel J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann of Math (2) 1996; 143(1): 149–179
[20]
Procesi C, Procesi M. A KAM algorithm for the resonant non-linear Schrödinger equation. Adv Math 2015; 272: 399–470
[21]
Procesi M, Procesi C. A normal form for the Schrödinger equation with analytic non-linearities. Comm Math Phys 2012; 312(2): 501–557
[22]
Procesi M, Xu X D. Quasi-Töplitz functions in KAM theorem. SIAM J Math Anal 2013; 45(4): 2148–2181
[23]
Wang W M. Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions. Duke Math J 2016; 165(6): 1129–1192
[24]
Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm Math Phys 1990; 127(3): 479–528
[25]
Xu J X, You J G. Persistence of lower-dimensional tori under the first Melnikov’s non-resonance condition. J Math Pures Appl (9) 2001; 80(10): 1045–1067
[26]
You J G, Geng J S, Xu JX. KAM theory in finite and infinite dimensional spaces. Sci Sin Math 2017; 47: 77–96

RIGHTS & PERMISSIONS

2024 Higher Education Press 2024
AI Summary AI Mindmap
PDF(636 KB)

Accesses

Citations

Detail

Sections
Recommended

/