A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities

Shuaishuai XUE

Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 75 -100.

PDF (636KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 75 -100. DOI: 10.3868/s140-DDD-024-0007-x
RESEARCH ARTICLE

A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities

Author information +
History +
PDF (636KB)

Abstract

In this paper, we prove an infinite dimensional KAM theorem and apply it to study 2-dimensional nonlinear Schrödinger equations with different large forcing terms and (2p + 1)-nonlinearities

      iutΔu+φ1(ω¯1t)u+φ2(ω¯2t)|u|2pu=0,tR,xT2

under periodic boundary conditions. As a result, the existence of a Whitney smooth family of small-amplitude reducible quasi-periodic solutions is obtained.

Keywords

Schrödinger equation / reducible KAM tori / small divisor / quasi-periodic solution

Cite this article

Download citation ▾
Shuaishuai XUE. A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities. Front. Math. China, 2024, 19(2): 75-100 DOI:10.3868/s140-DDD-024-0007-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 1999; 12(4): 823–850

[2]

Bourgain J. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat Math Res Notices 1994; 1994(11): 475–497

[3]

Bourgain J. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann of Math (2) 1998; 148(2): 363–439

[4]

Bourgain J. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom Funct Anal 1995; 5(4): 629–639

[5]

BourgainJ. Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, Vol 46. Providence, RI: AMS, 1999

[6]

Bourgain J. On diffusion in high-dimensional Hamiltonian systems and PDE. J Anal Math 2000; 80: 1–35

[7]

BourgainJ. Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, Vol 158. Princeton, NJ: Princeton University Press, 2005

[8]

Bourgain J, Wang W M. Quasi-periodic solutions of nonlinear random Schrödinger equations. J Eur Math Soc (JEMS) 2008; 10(1): 1–45

[9]

Chierchia L, You J G. KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm Math Phys 2000; 211(2): 497–525

[10]

Craig W, Wayne C E. Newton’s method and periodic solutions of nonlinear wave equations. Comm Pure Appl Math. 1993; 46(11): 1409–1498

[11]

Eliasson L H. Perturbations of stable invariant tori for Hamiltonian systems. Ann Scuola Norm Sup Pisa Cl Sci (4) 1988; 15(1): 115–147

[12]

EliassonL HKuksinS B. KAM for the non-linear Schrödinger equation—a short presentation. In: Holomorphic Dynamics and Renormalization, Fields Inst Commun, Vol 53. Providence, RI: AMS, 2008, 361–376

[13]

Geng J S, Xu X D, You J G. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv Math 2011; 226(6): 5361–5402

[14]

Geng J S, Xue S S. Invariant tori for two dimensional nonlinear Schrödinger equations with large forcing terms. J Math Phys 2019; 60(5): 052703

[15]

Geng J S, Xue S S. Reducible KAM tori for two-dimensional quintic Schrödinger equations. Sci Sin Math 2021; 51: 457–498

[16]

KappelerTPöschelJ. KdV & KAM, A Series of Modern Surveys in Mathematics, Vol 45. Berlin: Springer-Verlag, 2003

[17]

Kuksin S B. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct Anal Appl 1987; 21: 192–205

[18]

KuksinS B. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, Vol 1556. Berlin: Springer-Verlag, 1993

[19]

Kuksin S B, Pöschel J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann of Math (2) 1996; 143(1): 149–179

[20]

Procesi C, Procesi M. A KAM algorithm for the resonant non-linear Schrödinger equation. Adv Math 2015; 272: 399–470

[21]

Procesi M, Procesi C. A normal form for the Schrödinger equation with analytic non-linearities. Comm Math Phys 2012; 312(2): 501–557

[22]

Procesi M, Xu X D. Quasi-Töplitz functions in KAM theorem. SIAM J Math Anal 2013; 45(4): 2148–2181

[23]

Wang W M. Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions. Duke Math J 2016; 165(6): 1129–1192

[24]

Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm Math Phys 1990; 127(3): 479–528

[25]

Xu J X, You J G. Persistence of lower-dimensional tori under the first Melnikov’s non-resonance condition. J Math Pures Appl (9) 2001; 80(10): 1045–1067

[26]

You J G, Geng J S, Xu JX. KAM theory in finite and infinite dimensional spaces. Sci Sin Math 2017; 47: 77–96

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (636KB)

487

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/