
A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities
Shuaishuai XUE
Front. Math. China ›› 2024, Vol. 19 ›› Issue (2) : 75-100.
A KAM theorem for 2-dimensional nonlinear Schrödinger equations with forcing terms and (2p+1)-nonlinearities
In this paper, we prove an infinite dimensional KAM theorem and apply it to study 2-dimensional nonlinear Schrödinger equations with different large forcing terms and (2p + 1)-nonlinearities
under periodic boundary conditions. As a result, the existence of a Whitney smooth family of small-amplitude reducible quasi-periodic solutions is obtained.
Schrödinger equation / reducible KAM tori / small divisor / quasi-periodic solution
E-mail: ssx@nau.edu.cn
[1] |
Bambusi D. On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 1999; 12(4): 823–850
|
[2] |
Bourgain J. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat Math Res Notices 1994; 1994(11): 475–497
|
[3] |
Bourgain J. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann of Math (2) 1998; 148(2): 363–439
|
[4] |
Bourgain J. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom Funct Anal 1995; 5(4): 629–639
|
[5] |
BourgainJ. Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, Vol 46. Providence, RI: AMS, 1999
|
[6] |
Bourgain J. On diffusion in high-dimensional Hamiltonian systems and PDE. J Anal Math 2000; 80: 1–35
|
[7] |
BourgainJ. Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, Vol 158. Princeton, NJ: Princeton University Press, 2005
|
[8] |
Bourgain J, Wang W M. Quasi-periodic solutions of nonlinear random Schrödinger equations. J Eur Math Soc (JEMS) 2008; 10(1): 1–45
|
[9] |
Chierchia L, You J G. KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm Math Phys 2000; 211(2): 497–525
|
[10] |
Craig W, Wayne C E. Newton’s method and periodic solutions of nonlinear wave equations. Comm Pure Appl Math. 1993; 46(11): 1409–1498
|
[11] |
Eliasson L H. Perturbations of stable invariant tori for Hamiltonian systems. Ann Scuola Norm Sup Pisa Cl Sci (4) 1988; 15(1): 115–147
|
[12] |
EliassonL HKuksinS B. KAM for the non-linear Schrödinger equation—a short presentation. In: Holomorphic Dynamics and Renormalization, Fields Inst Commun, Vol 53. Providence, RI: AMS, 2008, 361–376
|
[13] |
Geng J S, Xu X D, You J G. An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv Math 2011; 226(6): 5361–5402
|
[14] |
Geng J S, Xue S S. Invariant tori for two dimensional nonlinear Schrödinger equations with large forcing terms. J Math Phys 2019; 60(5): 052703
|
[15] |
Geng J S, Xue S S. Reducible KAM tori for two-dimensional quintic Schrödinger equations. Sci Sin Math 2021; 51: 457–498
|
[16] |
KappelerTPöschelJ. KdV & KAM, A Series of Modern Surveys in Mathematics, Vol 45. Berlin: Springer-Verlag, 2003
|
[17] |
Kuksin S B. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct Anal Appl 1987; 21: 192–205
|
[18] |
KuksinS B. Nearly Integrable Infinite-dimensional Hamiltonian Systems. Lecture Notes in Mathematics, Vol 1556. Berlin: Springer-Verlag, 1993
|
[19] |
Kuksin S B, Pöschel J. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann of Math (2) 1996; 143(1): 149–179
|
[20] |
Procesi C, Procesi M. A KAM algorithm for the resonant non-linear Schrödinger equation. Adv Math 2015; 272: 399–470
|
[21] |
Procesi M, Procesi C. A normal form for the Schrödinger equation with analytic non-linearities. Comm Math Phys 2012; 312(2): 501–557
|
[22] |
Procesi M, Xu X D. Quasi-Töplitz functions in KAM theorem. SIAM J Math Anal 2013; 45(4): 2148–2181
|
[23] |
Wang W M. Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions. Duke Math J 2016; 165(6): 1129–1192
|
[24] |
Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm Math Phys 1990; 127(3): 479–528
|
[25] |
Xu J X, You J G. Persistence of lower-dimensional tori under the first Melnikov’s non-resonance condition. J Math Pures Appl (9) 2001; 80(10): 1045–1067
|
[26] |
You J G, Geng J S, Xu JX. KAM theory in finite and infinite dimensional spaces. Sci Sin Math 2017; 47: 77–96
|
/
〈 |
|
〉 |