A new class of spectrally arbitrary complex sign pattern

Yinzhen MEI , Peng WANG

Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 13 -24.

PDF (337KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 13 -24. DOI: 10.3868/s140-DDD-024-0002-x
RESEARCH ARTICLE

A new class of spectrally arbitrary complex sign pattern

Author information +
History +
PDF (337KB)

Abstract

Assume that S is an nth-order complex sign pattern. If for every nth degree complex coefficient polynomial f(λ) with a leading coefficient of 1, there exists a complex matrix CQ(S) such that the characteristic polynomial of C is f(λ), then S is called a spectrally arbitrary complex sign pattern. That is, if the spectrum of nth-order complex sign pattern S is a set comprised of all spectra of nth-order complex matrices, then S is called a spectrally arbitrary complex sign pattern. This paper presents a class of spectrally arbitrary complex sign pattern with only 3n nonzero elements by adopting the method of Schur complement and row reduction.

Keywords

Complex sign pattern / potentially nilpotent / spectrally arbitrary

Cite this article

Download citation ▾
Yinzhen MEI, Peng WANG. A new class of spectrally arbitrary complex sign pattern. Front. Math. China, 2024, 19(1): 13-24 DOI:10.3868/s140-DDD-024-0002-x

登录浏览全文

4963

注册一个新账户 忘记密码

1 Introduction

Assume that A = (akl) and B = (bkl) are nth-order sign patterns. Define S=A+ iB as an nth-order complex sign pattern, where i2 = −1 and (k, l)-element of S is given by skl = akl + ibkl, k, l=1,2,, n. Then sign patterns A and B are referred to as the real part matrix and the imaginary part matrix of the complex pattern S, respectively. Define the total number of nonzero elements in A and B as the number of nonzero elements in complex pattern S.

If there exists a complex matrix CQ(S) with a characteristic polynomial fC(λ)= λn, then S is considered potentially nilpotent and C a nilpotent complex matrix. If for every nth-degree complex coefficient polynomial f(x) with a leading coefficient of 1, there exists a complex matrix MQ( S), such that fM(λ)=f( x), then S is called a spectrally arbitrary complex sign pattern. If S is a spectrally arbitrary complex sign pattern and there is no spectrally arbitrary proper subpattern of S, then S is called a minimally spectrally arbitrary complex sign pattern. Please see references [2-7, 9, 10] for other terms and symbols in this paper.

In reference [4], Gao et al. extended the Nilpotent-Jacobian method [1] that could determine a sign pattern as spectrally arbitrary to a complex sign pattern and used it to demonstrate a class of nth-order irreducible spectrally arbitrary complex sign patterns. They also proposed a conjecture that an nth-order irreducible spectrally arbitrary complex sign pattern contains at least 3n nonzero elements. The Nilpotent-Jacobian method, which obtains the spectral arbitrariness of the studied pattern mainly by judging the non-singularity of corresponding Jacobian matrix, has been widely applied in many mathematical papers, such as [35, 810].

Using the Nilpotent-Jacobian method of complex sign pattern, this paper presents a new class of spectrally arbitrary complex sign patterns containing only 3n nonzero elements.

Assume that

S n=A+iB =( 10 101+i1 101 1 011i i i ii) =( 10 1011 101 1 01 10 )+ i(0 10 011 111),

where n4.

2 Some Lemmas

For the sake of convenience, and without loss of generality, let

Cn= ( a1 01 0 a2+ib0 1a30 1 an1 01 anibn ibn1i bn2 ib2 ib1),n4 ,

where ak>0, bl>0, k=1,2,,n, l=0,1,2,,n. Then CnQ(S n).

Let

f(λ)=|λI Cn|=|λ +a101 0λ a2 ib 0 1 a3λ 1 an1 λ1 an+ ib n ibn 1i bn2 ib 2 λ+ ib1|.

Expanding the determinant along the first two rows, we obtain

f(λ )=| λ+a1 00 λa2 ib 0|| λ1 λ1 λ 1i bn2ibn3 ib 2 λ+ ib1| | λ+a1 10 1 ||01 λ1 λ1ibn1ibn3 ib 2 λ+ ib1| +| 01 λa2 ib 0 1 ||a3 1 a4 λ1 an 1 λ1 an+ ib n ibn 3 ib2λ+i b1|= (λ+ a1)(λ a2 ib0)Δn2+ib n1(λ +a1)+(λ a2 ib0)[a3Δn3+a4Δn4++an3Δ3+ an2(λ2+ ib1λ +ib 2)+an1(λ +ib 1)+an ibn]= (λ a2 ib0)[(λ+a1) Δn2+ a3Δn3+ a4Δn4++an3Δ3 +an2(λ2+ ib1λ +ib 2)+an1(λ +ib 1)+an ibn]+ ibn 1(λ+ a1),

where

Δk =|λ 1 λ1 λ1ibk ib k1 ib 2 λ+ ib1| = λk+ ib1λk1+ib2λk2++i bk1λ+i bk, k=3,4, ,n2.

Assume that

f (λ)=λn+( f1+ ig1)λn 1+(f2+ig 2)λn 2++(fk+ igk)λn k + +(fn1+ig n1)λ +(fn+ ign),

then

{ f1= a1a2, g1= b1b0, f2= a3a1a2+ b0b1, g2= b2+( a1 a2)b1a1b0, f3= a4a2a3+ a1b1b0+ b2b0, g3= b3+( a1 a2)b2+( a3 a2a1)b1a3b0, fk=ak+1a2ak+ ak1b1b 0+a k2 b2b0++a3bk3b0+a1bk 2 b0+ bk 1b0, gk= bk+( a1 a2)bk1+(a3a2a1)bk2+(a4a2a3)bk3++( ak1a2ak2)b2+ ( aka2ak1)b1 akb0, fn1=a na2a n1+an2b1b 0+a n3 b2b0++a3bn4b0+a1bn 3 b0+ bn 2b0, gn 1= bn1+( a1 a2)bn2+(a3a2a1)bn3+(a4a2a3)bn4++(an1 a2an2)b1 an1b0 bn, fn= a2an+an1b1b0+ an2b2b 0++a3bn3b0+a1bn 2 b0bnb0, gn= a2bn+a1bn 1a2a1bn2a2a3bn3a2a4bn4 a2an3b3 a2an 2 b2 a2an1b1 anb0.

Lemma 2.1  When m4, complex mode Snis potentially nilpotent.

Proof Assume that Cn is matrix (2.1), then (2.2) is the characteristic polymonial of Cn.

Let fk= 0, gk = 0, k=1,2,,n, then it follows from (2.3) that

{ a1= a2, b1= b0, a3= a1a2 b0b1=a22b12, b2= a2b1,a4= a2a3 a1b1b0 b2b0= a 23 3a2b12, b3=( a2a1 a3)b1+ a3b0=a2b1=a2b1b4= ( a2a1 a3)b2+ ( a2a3 a4)b1+ a4b0= a2b3, ak+1= ( a2a1 a2)b1b0 ak2b2b 0+a3bk 3b0 a1bk 2 b0bk1b0,bk= ( a2a1 a3)bk2+( a2a3 a4)bk3++(a2ak1ak)b1+ akb0, an= a2an 1an2b0 an 3b0 an 3b0 an3b0 an 3b0 bn2b0,bn1=( a2a1 a3)bn3+(a2a3 a4)b0 +( a3an2an1)b1+ an1b0+bn, bnb0= an1b1b 0+a n2 b2b0++a3bn3b0+a1bn 2 b0a2an, a1bn 1=a2a1bn2+ a2a3b n3+a2a4bn4++ a2an1b1+anb0 a2bn.

It can be deduced by mathematical induction that when k=2,, n2, bk= a1bk 1. When k=4,5,,n, a k is the (k1)th-degree monic polymonial of a 2 and ak=2a2ak1( a 22+ b 12)ak2. Therefore, when b1>0, a2>0 and a 2 is large enough, a i>0, b j>0, a2k1>ak, where i=1,2,,n, j=1,2,,n2, k=3,4,, n.

The remaining three formulas are then discussed as follows:

(2.5a)bn1=( a2a1 a3)bn3+(a2a3 a4)bn4++(a2an 2an1)b1+ an1b0+bn,

(2.5b)bnb0= an1b1b 0+a n2 b2b0++a3bn3b0+a1bn 2 b0a2an,

(2.5c)a1bn1= a2a1b n2+a2a3bn3+ a2a4b n4++ a2an1b1+anb0 a2bn.

Firstly, it follows from (2.5a) that

bn1=(a2a1 a3)bn3+( a2a3 a4)bn4++(a2an2an1)b1+ an1b0+bn=(a2a1 a3)bn3+ a3a2bn4a4(bn4 a2bn5) an 2(b2a2b1) +an1(b0 b1)+bn =(a2a1 a3)bn3+ a3bn 3+bn =a2a1bn3+ bn= a1bn 2+bn.

Next, the following equation can be obtained through (2.5b) and (2.5c):

( a22+ b02)an= a1b0bn1.

Then, it can be obtained through substituting (2.6) into (2.5b) that

(a22+ b 02)bn=( a22+ b02)(a n1 b1+ an 2b2+ + a3bn 3+a1bn2) a 22 bn1=(a22+ b 02)(an1b1+an2b2+ + a3bn 3+a1bn2) a 22(a1bn 2+bn).

After rearranging, we obtain

(2a22+ b 02)bn=( a 22+ b 02)(an1b1+an2b2+ + a3bn 3)+b02 a1bn2>0.

Hence, bn>0, b n 1>0.

Finally, to prove that equation (2.5c) holds, let’s assume that

h(a1, b1)=a2a1b n2+a2a3bn3+ a2a4b n4++ a2an1b1+anb0 a2bn a1bn 1 = a2a1b n2+a2a3bn3++ a2an1b1+anb0+a1( bn ( a1bn 2+bn)) =a2a3bn3++ a2an1b1+anb02a1bn.

Then

(a22 +b02)h( a1, b1) =( a22+ b 02)(a2a3bn3++ a2an2b2+a2an 1 b1+ anb02a1bn) =( a22+ b 02)(a2a3bn3++ a2an2b2+a2an 1 b1)+ a1 b02 bn12a1( a22+ b02)bn =(a22+ b02)( a 2 a3bn3++ a2an2b2+a2an 1 b1)+ a 12 b02 bn2( 2a22+ b 02 )a1bn =(a22+ b 02)(a2a3bn3++ a2an2b2+a2an 1 b1)+ a 12 b02 bn2a1( a22+ b02)(a n1 b1+ an 2b2+ + a3bn 3)b02 a12 bn20.

Based on the above, there exists ak>0, b l>0, k=1,2,,n, l=0,1,2,,n, such that complex pattern Sn is potentially nilpotent.

Let

P=( r1, r2, , r2 n)= (a1, a3,, an3, an 2, an1, an, bn, bn 1, a2, b1, b2, , bn 3, bn2).

Then P is the nilpotent point of Cn, which can prove the following conclusion.

Lemma 2.2 |J|P= det( f1, f2, f3, , fn 2, fn1, fn, gn, gn 1, gn2,, g3, g2, g1)(a1, a3, , an 3, an2, an 1, an, bn, bn1, a2, b1, b2,, bn3, bn 2)|P 0.

Proof It can be known from the conditions that the Jacobian matrix of Cn at P is

J|P=( A1T A2TA3 TA4T),

where

A 1T= (1 a21 b0b1 a21 b0b2b0b1a2 1 b0b n4b0bn5a2 1b0bn 3b0bn4b0b1a2 1 b 0 bn2 b0bn 3 b0b2 b0b1 a2b0 bnbn2b3 b2b1 a2 a1),

A 2T= ( 10 a1 b0 0 a3 b0a1 b0 0 a4 b0a3 b0a1 b0 0 an2 b0an 3b0an4b0a1b00 an 1 b0an2 b0an 3 b0a3 b0a1 b0 an b0an 1b0an2b0a4b0a3b0a1bn k= 2n 1 akbnk a2an1a2an2a2a4 a2a3a2a1),

A 3T= ( 11) (n1)× (n+1),

A4T= ( bn2k= 1n 2 akbnk 1an 1a2an2 an 2 a2an3a4a2a3 a3 a2a1 0 bn3k= 2n 3 akbnk 2an 2a2an3 an 3 a2an4a3a2a1 01 b3a1b2 a3b1 a4 a2a3 a3 a2a1 01 b2 a1b1 a3 a2a1 01 b101).

Let X=(x1, x2, , xn, yn) T, Y=(yn1,, y1) T. And examine the matrix equation:

(A1 A3 A2A4) ( XY)= ( O n+1 On1) ,

that is

(2.7a)A1X +A3Y=O,

(2.7b)A2X +A4Y=O.

A 1X= A3Y can be obtained through (2.7a). Obviously, A1 is invertible, and

( A1T) 1= (1 a21 a3 a2 1 a4 a3 a2 1 an 2an3 an 4 a21 an1 an 2 an3 a3 a2 1 anb0 an1b0 an2b0 a4b0 a2 b 0 a2 b 0 1 b02an b 02a 1 an1an a 1 b02a 2 an2an1a1b0 2a2a1 a4a1b02a 2 a3 a4 a 1 b0 a22+ b 12 b 1 b01b0 1 a1),

A3T( A1 T )1=(3 an 3a 2 an1an a 1 b03a2an2an1a1b0 3a 2 a3 a4 a 1 b03a2a1 a3 a 1 b02b0 1a1 0000 000 000 0000),

(A2 A11A3)T=A3T( A1 T )1 A2 T= (3 an b0 3 a2an 1an a 1 b03a2an2an1a1b0 3a 2 a3 a4 a 1 b02a02+ b 02 a 1 b02b0 1a1 0000 000 000 0000) ( 1 a1 b0 a3 b0a1b0a4 b0a3 b0a1 b0 an1 b0an 2b0an3 b0a1 b0 an b0an 1b0an2 b0a3 b0a1 bnk=2n 1akbnk=a2an b0 a2an1a2an2a2a 3 a2a1)= (s1 s2 s3 sn 4 sn3 sn 2 sn10 000000000 0000),

where

s1= 3an b0+an3a2an1 b0+(an1 3a2a n2) a3 a 1 b0+( an23a2an3)a4 a 1 b0++(a43a2a3)an2 a1b0+( a3 3a2a 1)an1 a1b03 an b0,

s2= (3a2an1an)b0a1b0+( 3a2a n2an1)a1b0 a 1 b0+( 3a2a n3an2)a3b0 a 1 b0++ (3 a2a3 a4)an3b0 a 1 b0+( 3a2a 1a3)an2b0a1b0+ an1b0b0,

s3= (3a2an2an1)b0 a 1 b0+( 3a2a n3an2)a1b0 a 1 b0+( 3a2a n4an3)a3b0 a 1 b0++(3a2a3 a4)an4b0 a 1 b0+( 3a2a 1a3)an3b0a1b0+ an2b0b0,

sn2=(3a2a3 a4)b0 a 1 b0+( 3a2a 1a3)a1b0 a 1 b0+a3b0 b0,

sn1=(3a2a1 a3)b0 a 1 b0+a1b0 b0.

Based on (2.7a), substituting X=A11A3Y into (2.7b), we have ( A4 A2 A11A3)Y= O, that is

{ b1y2+(b2+ a1b1)y3+( b3+ a1b2+ a3b1)y4++ (bn3+ k=2n3akbnk 2 )yn2 +( b n2+k=2n 2akbnk 1+ s1) yn 1=0,y2+ ( a3a2a1)y4++(an4 a2an5)yn3+( an3a2an4)yn2 +(an2a2an3s3)yn1=0, yn 4+(a3a2a1)yn2+ ((a4 a2a2)sn3)yn1=0,yn3+(a3a2a1 s2)yn1=0,yn2= sn 1yn1=0,y1+( a3 a2a1)y3+( a4 a2a3)y4++(an3 a2an4)yn3 +(an2a2an3)yn2+( an1a2an3s2)yn 1=0.

Firstly, by successively adding ( i1)bi1 times the ith equation to the first equation and then rearranging, we obtain

{[ (n2 ) bn 2+ s1+ b1s3+ 2b2s 4++( n3) b n3 sn 1]yn 1=0,y2+ ( a3a2a1)y4+( a4 a2a3)y5+ +(a n3a2an4)yn2+( an2a2an3s3)yn1=0, yn 4+(a3a2a1)yn2+(a4a2a3 sn3)yn1=0,yn3+(a3a2a1 sn2)yn1=0,yn2 sn1yn 1=0,y1+ ( a3a2a1)y3+( a4 a2a3)y4+ +(a n2a2an3)yn2+( an1a2an2s2)yn1=0.

Next, starting from the (n2)th equation and proceeding upward, we solve each equation successively, yielding

{ yn 2= sn1yn 1, y n3=( sn2+ a2a1 a3)yn1, yn4=( a2a1 a3)yn 2+( s n3+a2a3 a4)yn 1, y n5=( a2a1 a3)yn 3+( a 2 a3 a4)yn 2+( s n4+a2a4 a5)yn 1, y2= ( a2a1 a3)y4+ ( a2a3 a4)y5+ +( a2an4an3)yn2 +(s3+ a2an3an2)yn1, y1= ( a2a1 a3)y3+ ( a2a3 a4)y4+ +( a2an3an2)yn2 +(s2+ a2an2an1)yn1, [(n 2) bn2+ s1+ b1s3+2b2s4+ +(n 3) bn3sn 1] yn1=0.

Obviously, y1,y2, ,yn2 are all monomial functions of y n1.

Let h=(n 2)bn2+ s1+ b1s3+2b2s4+ +(n 3) bn3sn 1. It can be known from Lemma 2.1 that when k=2,,n, a2k 2ak+ 1<0; when k=3,,n 1, 3a2a kak+ 1=a2ak+ ( a22+ b12)ak1>0. Then

h= (n2)bn2+ s1+ b1s3+2b2s4+ +(n 3) bn3sn 1= s1+ 1 a2b0[ (a2n a2an)+(3a2a1 a3)(a2n2an1) +(3a2a3 a4)(a2n3an2)++(3 a2an2an1)(a22 a3)] = 1a2b0[( a 2n 5a2a n)+( 3a2a 1a3)( a 2n22an1) +(3a2a3 a4)(a2n32an2)++(3 a2an3an2)(a23 2a4)+( 3a2a n2an1)(a22 2a3)+(3a2an1an)(a2 2a1)] <0.

Therefore, there is only zero solution yn1=0 to the last equation (2.8), and yn2= yn 3==y2= y1=0, namely Y = O, X = O. So, there is only zero solution to the equation (A1 A3 A2A4) ( XY)= (On+1On1). That is, (J|P)T( XY) has only a zero solution. Consequently, the rank of the Jacobian matrix J|P is 2n. Hence, J|P0.

Lemma 2.3 [4]  Assume that an nth-order complex pattern S=A+ iB, n2, and there exists a nilpotent complex matrix C=A+iBQ(S), where AQ(A), BQ(B), and A and B contain at least 2n nonzero elements which, without loss of generality, are marked as ai1j1,,a in1jn1, bin1+ 1 jn1+ 1,, bi2n j2n. Assume that X is the matrix after replacing these nonzero elements with variables x1, ,x 2n, and the characteristic polynomial is

|λIX|= λn+ (f1(x1, x2, , x2 n)+ig1(x1, x2, , x2 n) )λn 1+ +(fn1(x1, x2, , x2 n)+ ign1(x1, x2, , x2 n))λ +(f n(x1, x2,, x2n )+ign(x1, x2,, x2n )).

If the nilpotent point for Jacobian matrix J= (f 1,,fn, g1, , gn)( x1, , x2 n) of X

( x1,, x2n)=( a i1j1,,a in1j n1, bin1+ 1 jn1+ 1,, bi2n j2n)

is nonsingular, then the complex pattern S is spectrally arbitrary, and any super pattern of S is a spectrally arbitrary complex sign pattern.

From Lemma 2.1−2.3, the following conclusion is readily established.

Theorem 2.1  When n4, the complex pattern Snand any of its super patterns are spectrally arbitrary.

In fact, when n = 3, Theorem 2.1 is also established.

Example 2.1 Complex pattern

S3= ( 10 10 1+ i11i i i)

and any of its super patterns are spectrally arbitrary.

Proof Let

C3= ( a1 010a2+ ib01 a3 ib3i b2 i b1) Qc( S3).

Then

f(λ)=|λI C3|= λ3+( f1+ ig 1)λ2+( f2+ ig 2)λ+(f3+ig3),

where

f1 = a1a2, g1= b1 b0, f2= a3 a2a1+ b1b0, g2= b2+ ( a1a2)b1a2b1 b3, f3=a2a 3+a 1 b1b0 b3b0, g3= a2b3+ a1b2 a2a1b1 a3b0.

Hence,

J=(f1, f2, f3, g3, g2, g1)(a1, a3, b3, b2, a2, b1)=(100 010 a2 100a1 b0 b0b 1 a2b0 0a3 a1b0 b2 a2b1b0 a2 a1 b3 a1b1 a2a1b1 b0 01 1b1 a1 a2 00 0001).

When b1 = b0 = 1, a1= a2=123+17, a3=1714,b2=91783+17, and b3= 51783+17, C3 is nilpotent and det(J) |P=17 (3+ 17)0. From Lemma 2.3, it can be seen that S3 and any of its super patterns are spectrally arbitrary.

References

[1]

Bergsma H, Vander Meulen K N, Van Tuyl A. Potentially nilpotent patterns and the nilpotent-Jacobian method. Linear Algebra Appl 2012; 436(12): 4433–4445

[2]

Britz T, McDonald J J, Olesky D D, van den Driessche P. Minimal spectrally arbitrary sign patterns. SIAM J Matrix Anal Appl 2004; 26(1): 257–271

[3]

Feng X L, Li Z S. New results on sign patterns that allow diagonalizability. J Math Res Appl 2022; 42(2): 111–120

[4]

Gao Y B, Shao Y L, Fan Y Z. Spectrally arbitrary complex sign pattern matrices. Electron J Linear Algebra 2009; 18: 674–692

[5]

McDonald J J, Stuart J. Spectrally arbitrary ray patterns. Linear Algebra Appl 2008; 429(4): 727–734

[6]

McDonald J J, Yielding A A. Complex spectrally arbitrary zero-nonzero patterns. Linear Multilinear Algebra 2012; 60(1): 11–26

[7]

Mei Y Z, Gao Y B, Shao Y L, Wang P. The minimum number of nonzeros in a spectrally arbitrary ray pattern. Linear Algebra Appl 2014; 453: 99–109

[8]

Mei Y Z, Gao Y B, Shao Y L, Wang P. A new family of spectrally arbitrary ray patterns. Czechoslovak Math J 2016; 66(4): 1049–1058

[9]

Shao J Y, Liu Y, Ren L Z. The inverse problems of the determinantal regions of ray pattern and complex sign pattern matrices. Linear Algebra Appl 2006; 416(2/3): 835–843

[10]

Shao J Y, Shan H Y. The determinantal regions of complex sign pattern matrices and ray pattern matrices. Linear Algebra Appl 2005; 395: 211–228

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (337KB)

367

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/