A new class of spectrally arbitrary complex sign pattern

Yinzhen MEI, Peng WANG

Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 13-24.

PDF(337 KB)
PDF(337 KB)
Front. Math. China ›› 2024, Vol. 19 ›› Issue (1) : 13-24. DOI: 10.3868/s140-DDD-024-0002-x
RESEARCH ARTICLE

A new class of spectrally arbitrary complex sign pattern

Author information +
History +

Abstract

Assume that S is an nth-order complex sign pattern. If for every nth degree complex coefficient polynomial f(λ) with a leading coefficient of 1, there exists a complex matrix CQ(S) such that the characteristic polynomial of C is f(λ), then S is called a spectrally arbitrary complex sign pattern. That is, if the spectrum of nth-order complex sign pattern S is a set comprised of all spectra of nth-order complex matrices, then S is called a spectrally arbitrary complex sign pattern. This paper presents a class of spectrally arbitrary complex sign pattern with only 3n nonzero elements by adopting the method of Schur complement and row reduction.

Keywords

Complex sign pattern / potentially nilpotent / spectrally arbitrary

Cite this article

Download citation ▾
Yinzhen MEI, Peng WANG. A new class of spectrally arbitrary complex sign pattern. Front. Math. China, 2024, 19(1): 13‒24 https://doi.org/10.3868/s140-DDD-024-0002-x

References

[1]
Bergsma H, Vander Meulen K N, Van Tuyl A. Potentially nilpotent patterns and the nilpotent-Jacobian method. Linear Algebra Appl 2012; 436(12): 4433–4445
[2]
Britz T, McDonald J J, Olesky D D, van den Driessche P. Minimal spectrally arbitrary sign patterns. SIAM J Matrix Anal Appl 2004; 26(1): 257–271
[3]
Feng X L, Li Z S. New results on sign patterns that allow diagonalizability. J Math Res Appl 2022; 42(2): 111–120
[4]
Gao Y B, Shao Y L, Fan Y Z. Spectrally arbitrary complex sign pattern matrices. Electron J Linear Algebra 2009; 18: 674–692
[5]
McDonald J J, Stuart J. Spectrally arbitrary ray patterns. Linear Algebra Appl 2008; 429(4): 727–734
[6]
McDonald J J, Yielding A A. Complex spectrally arbitrary zero-nonzero patterns. Linear Multilinear Algebra 2012; 60(1): 11–26
[7]
Mei Y Z, Gao Y B, Shao Y L, Wang P. The minimum number of nonzeros in a spectrally arbitrary ray pattern. Linear Algebra Appl 2014; 453: 99–109
[8]
Mei Y Z, Gao Y B, Shao Y L, Wang P. A new family of spectrally arbitrary ray patterns. Czechoslovak Math J 2016; 66(4): 1049–1058
[9]
Shao J Y, Liu Y, Ren L Z. The inverse problems of the determinantal regions of ray pattern and complex sign pattern matrices. Linear Algebra Appl 2006; 416(2/3): 835–843
[10]
Shao J Y, Shan H Y. The determinantal regions of complex sign pattern matrices and ray pattern matrices. Linear Algebra Appl 2005; 395: 211–228

RIGHTS & PERMISSIONS

2024 Higher Education Press 2024
AI Summary AI Mindmap
PDF(337 KB)

Accesses

Citations

Detail

Sections
Recommended

/