On blow-up criterion for the nonlinear Schrödinger equation systems

Yili GAO

Front. Math. China ›› 2023, Vol. 18 ›› Issue (6) : 441 -447.

PDF (350KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (6) : 441 -447. DOI: 10.3868/s140-DDD-023-0031-x
RESEARCH ARTICLE

On blow-up criterion for the nonlinear Schrödinger equation systems

Author information +
History +
PDF (350KB)

Abstract

In this paper, we study the blow-up problem of nonlinear Schrödinger equations

         {itv+Δu+(|u|2+|v|2)u=0,(t,x)R1+n,itv+Δv+(|u|2+|v|2)v=0,(t,x)R1+n,u(0,x)=u0(x),v(0,x)=v0(x),

and prove that the solution of negative energy (E(u,v)<0) blows up in finite or infinite time.

Keywords

Nonlinear Schrödinger equations / blow up / negative energy

Cite this article

Download citation ▾
Yili GAO. On blow-up criterion for the nonlinear Schrödinger equation systems. Front. Math. China, 2023, 18(6): 441-447 DOI:10.3868/s140-DDD-023-0031-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergé L. Wave collapse in physics: principles and applications to light and plasma waves. Phys Rep 1998; 303(5/6): 259–370

[2]

Du D P, Wu Y F, Zhang K J. On blow-up criterion for the nonlinear Schrödinger equation. Discrete Cantin Dyn Syst 2016; 36(7): 3639–3650

[3]

Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys 1977; 18(9): 1794–1797

[4]

Holmer J, Roudenko S. Divergence of infinite-variance nonradial solutions to the 3d NLS equation. Comm Partial Differential Equations 2010; 35(5): 878–905

[5]

Kenig C, Merle F. Global well-posedness, scattering and blow-up for the energy critical focusing nonlinear wave equation. Acta Math 2008; 201(2): 147–212

[6]

SulemCSulemP-L. The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. New York: Springer-Verlag, 1999

RIGHTS & PERMISSIONS

Higher Education Press 2023

AI Summary AI Mindmap
PDF (350KB)

435

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/