Cluster-tilting objects in higher cluster categories

Xinhong CHEN , Ming LU

Front. Math. China ›› 2023, Vol. 18 ›› Issue (3) : 187 -201.

PDF (1316KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (3) : 187 -201. DOI: 10.3868/s140-DDD-023-0017-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Cluster-tilting objects in higher cluster categories

Author information +
History +
PDF (1316KB)

Abstract

We consider the existence of cluster-tilting objects in a d-cluster category such that its endomorphism algebra is self-injective, and also the properties for cluster-tilting objects in d-cluster categories. We get the following results: (1) When d>1, any almost complete cluster-tilting object in d-cluster category has only one complement. (2) Cluster-tilting objects in d-cluster categories are induced by tilting modules over some hereditary algebras. We also give a condition for a tilting module to induce a cluster-tilting object in a d-cluster category. (3) A 3-cluster category of finite type admits a cluster-tilting object if and only if its type is A1,A3,D2n1(n>2). (4) The (2m+1)-cluster category of type D2n1 admits a cluster-tilting object such that its endomorphism algebra is self-injective, and its stable category is equivalent to the (4m+2)-cluster category of type A4mn4m+2n1.

Graphical abstract

Keywords

Almost complete cluster-tilting object / Calabi−Yau triangulated category / cluster-tilting object / complement / d-cluster category

Cite this article

Download citation ▾
Xinhong CHEN, Ming LU. Cluster-tilting objects in higher cluster categories. Front. Math. China, 2023, 18(3): 187-201 DOI:10.3868/s140-DDD-023-0017-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buan A, Marsh R, Reineke M, Reiten I, Todorov G. Tilting theory and cluster combinatorics. Adv Math 2006; 204: 572–618

[2]

Buan A, Marsh R, Reiten I. Cluster mutation via quiver representation. Comment Math Helv 2006; 83(1): 143–177

[3]

Buan A, Marsh R, Reiten I. Cluster-tilted algebras of finite representation type. J Algebra 2006; 306(2): 412–431

[4]

Chapoton F, Fomin S, Zelevinsky A. Polytopal realizations of generalized associahedra. Canad Math Bull 2002; 45(4): 537–566

[5]

Dugas A. Periodicity of d-cluster-tilted algebras. J Algebra 2012; 268: 40–52

[6]

Fomin S, Reading N. Generalized cluster complexes and Coxeter combinatorics. Int Math Res Not 2005; 44: 2709–2757

[7]

Fomin S, Zelevinsky A. Cluster algebras I. Foundations. J Amer Math Soc 2002; 15(2): 497–529

[8]

Fomin S, Zelevinsky A. Cluster algebras Ⅱ. Finite type classification. Inv Math 2003; 154(1): 63–121

[9]

Fomin S, Zelevinsky A. Y-systems and generalized associahedra. Ann Math (2) 2003; 158(3): 977–1018

[10]

Fomin S, Zelevinsky A. Cluster algebras IV. Coefficients. Compos Math 2007; 143: 112–164

[11]

Gekhtman M, Shapiro M, Vainshtein A. Cluster algebras and Poisson geometry. Mosc Math J 2003; 3(3): 899–934

[12]

Gekhtman M, Shapiro M, Vainshtein A. Cluster algebras and Weil−Petersson forms. Duke Math J 2005; 127(2): 291–311

[13]

Holm T, Jørgensen P. Realising higher cluster categories of Dynkin type as stable module categories. Q J Math 2013; 64(2): 409–435

[14]

Iyama O, Yoshino Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules. Inv Math 2008; 172: 117–168

[15]

Keller B. On triangulated orbit categories. Doc Math 2005; 10: 551–581

[16]

Keller B, Reiten I. Cluster-tilted algebras are Gorenstein and stably Calabi−Yau. Adv Math 2007; 211(1): 123–151

[17]

Keller B, Yang D. Derived equivalences from mutations of quivers with potential. Adv Math 2011; 226(3): 2118–2168

[18]

Koenig S. From triangulated categories to abelian categories: Cluster tilting in a general framework. Math Z 2008; 258: 143–160

[19]

Thomas H. Defining an m-cluster category. J Algebra 2007; 318(1): 37–46

[20]

Xiao J, Zhu B. Locally finite triangulated categories. J Algebra 2005; 290(2): 473–490

[21]

Zhou Y, Zhu B. Maximal rigid subcategories in 2-Calabi-Yau triangulated categories. J Algebra 2011; 348(1): 49–60

[22]

Zhu B. Generalized cluster complexes via quiver representations. J Algebraic Combin 2008; 27(1): 35–54

RIGHTS & PERMISSIONS

Higher Education Press 2023

AI Summary AI Mindmap
PDF (1316KB)

588

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/