Alternating link and its generalization

Liangxia WAN

Front. Math. China ›› 2023, Vol. 18 ›› Issue (1) : 1 -14.

PDF (946KB)
Front. Math. China ›› 2023, Vol. 18 ›› Issue (1) : 1 -14. DOI: 10.3868/S140-DDD-023-005-X
SURVEY ARTICLE
SURVEY ARTICLE

Alternating link and its generalization

Author information +
History +
PDF (946KB)

Abstract

The alternating links give a classical class of links. They play an important role in Knot Theory. Ozsváth and Szabó introduced a quasi-alternating link which is a generalization of an alternating link. In this paper we review some results of alternating links and quasi-alternating links on the Jones polynomial and the Khovanov homology. Moreover, we introduce a long pass link. Several problems worthy of further study are provided.

Graphical abstract

Keywords

Alternating links / quasi-alternating links / pass replacement / Jones polynomial / Khovanov homology

Cite this article

Download citation ▾
Liangxia WAN. Alternating link and its generalization. Front. Math. China, 2023, 18(1): 1-14 DOI:10.3868/S140-DDD-023-005-X

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamsC C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W H Freeman and Company, 1994

[2]

Alexander J W, Briggs G B. On types of knotted curves. Ann of Math 1926/1927; 28(1/2/3/4): 562–586

[3]

Baldwin J. Heegaard Floer homology and genus one, one boundary component open books. J Topol 2008; 1(4): 963–992

[4]

Baldwin J A, Dowlin N, Levine A S, Lidman T, Sazdanovic R. Khovanov homology detects the figure-eight knot. Bull Lond Math Soc 2021; 53(3): 871–876

[5]

Baldwin J A, Sivek S. Khovanov homology detects the trefoils. Duke Math J 2022; 171(4): 885–956

[6]

Baldwin J A, Sivek S, Xie Y. Khovanov homology detects the Hopf links. Math Res Lett 2019; 26(5): 1281–1290

[7]

Bar-Natan D. On Khovanov’s categorification of the Jones polynomial. Algebr Geom Topol 2002; 2: 337–370

[8]

Bar-NatanD. Khovanov homology for knots and links with up to 11 crossings. In: Advances in Topological Quantum Field Theory. NATO Sci Ser Ⅱ Math Phys Chem, Vol 179. Dordrecht: Kluwer Acad Publ, 2004, 167–241

[9]

Batson J, Seed C. A link-splitting spectral sequence in Khovanov homology. Duke Math J 2015; 164(5): 801–841

[10]

Champanerkar A, Kofman I. Twisting quasi-alternating links. Proc Amer Math Soc 2009; 137(7): 2451–2458

[11]

Champanerkar A, Kofman I. A survey on the Turaev genus of knots. Acta Math Vietnam 2014; 39(4): 497–514

[12]

Chandler A, Lowrance A M, Sazdanović R, Summers V. Torsion in thin regions of Khovanov homology. Canad J Math 2022; 74(3): 630–654

[13]

ChbiliN. From alternating to quasi-alternating links. In: Knots, Low-dimensional Topology and Applications. Springer Proc Math Stat, Vol 284. Cham: Springer, 2019, 179–189

[14]

Chbili N, Kaur K. Extending Quasi-Alternating Links. J Knot Theory Ramifications 2020; 29(11): 2050072 (17 pp)

[15]

Chbili N, Qazaqzeh K. On the Jones polynomial of quasi-alternating links. Topology Appl 2019; 264: 1–11

[16]

ConwayJ H. An enumeration of knots and links, and some of their algebraic properties. In: Computational Problems in Abstract Algebra (Proc Conf, Oxford, 1967), Oxford: Pergamon, 1969, 329–358

[17]

Diao Y A, Ernst C, Ziegler U. Jones polynomial of knots formed by repeated tangle replacement operations. Topology Appl 2009; 156(13): 2226–2239

[18]

Garoufalidis S. A conjecture on Khovanov’s invariants. Fund Math 2004; 184: 99–101

[19]

GaussC F. Werke. Leipzig: Teubner, 1900 (in German)

[20]

Gillam W D. Knot homology of (3, m) torus knots. J Knot Theory Ramifications 2012; 21(8): 1250072

[21]

Greene J. Homologically thin, non-quasi-alternating links. Math Res Lett 2010; 17(1): 39–49

[22]

Greene J. A spanning tree model for the Heegaard Floer homology of a branched double-cover. J Topol 2013; 6(2): 525–567

[23]

Hedden M, Ni Y. Khovanov module and the detection of unlinks. Geom Topol 2013; 17(5): 3027–3076

[24]

Hoste J, Thistlethwaite M, Weeks J. The first 1, 701, 935 knots. Math Intelligencer 1998; 20(4): 33–48

[25]

Jaeger F, Vertigan D L, Welsh D J A. On the computational complexity of the Jones and Tutte polynomials. Math Proc Cambridge Philos Soc 1990; 108(1): 35–53

[26]

JiangB J. Mathematics of String Figures. Changsha: Hunan Education Publishing House, 1991 (in Chinese)

[27]

Jin X A, Zhang F J. The Jones polynomial for polyhedral links. MATCH Commun Math Comput Chem 2011; 65(2): 501–520

[28]

Jones V F R. A polynomial invariant for knots via von Neumann algebras. Bull Amer Math Soc (N S) 1985; 12(1): 103–111

[29]

JonesV F R. Ten problems. In: Mathematics: Frontiers and Perspectives. Providence, RI: AMS, 2000, 79–91

[30]

Kanenobu T. Jones and Q polynomials for 2-bridge knots and links. Proc Amer Math Soc 1990; 110(3): 835–841

[31]

Kauffman L H. State models and the Jones polynomial. Topology 1987; 26(3): 395–407

[32]

Kauffman L H. An introduction to Khovanov homology. In: Knot Theory and Its Applications. Contemp Math, Vol 670. Providence, RI: AMS 2016; 105–139

[33]

Khovanov M. A categorification of the Jones polynomial. Duke Math J 2000; 101(3): 359–426

[34]

Khovanov M. Patterns in knot cohomology, I. Exp Math 2003; 12(3): 365–374

[35]

Kronheimer P B, Mrowka T S. Khovanov homology is an unknot-detector. Publ Math Inst Hautes Études Sci 2011; 113: 97–208

[36]

Lackenby M. A polynomial upper bound on Reidemeister moves. Ann of Math 2015; 182(2): 491–564

[37]

Landvoy R A. The Jones polynomial of pretzel knots and links. Topology Appl 1998; 83(2): 135–147

[38]

Lee E, Lee S Y, Seo M. A recursive formula for the Jones polynomial of 2-bridge links and applications. J Korean Math Soc 2009; 46(5): 919–947

[39]

Lee E S. An endomorphism of the Khovanov invariant. Adv Math 2005; 197(2): 554–586

[40]

Lei F C, Zhang M L. A recursive formula for the Khovanov cohomology of Kanenobu knots. Bull Korean Math Soc 2017; 54(1): 1–15

[41]

Li Z K, Xie Y, Zhang B Y. Two detection results of Khovanov homology on links. Trans Amer Math Soc 2021; 374(9): 6649–6664

[42]

LipshitzRSarkarS. Khovanov homology also detects split links. 2019. arXiv: 1910.04246

[43]

Manion A. The rational Khovanov homology of 3-strand pretzel links. J Knot Theory Ramifications 2014; 23(8): 1450040 (40 pp)

[44]

Manolescu C. An unoriented skein exact triangle for knot Floer homology. Math Res Lett 2007; 14(5): 839–852

[45]

ManolescuCOzsváhP. On the Khovanov and knot Floer homologies of quasi-alternating links. In: Proceedings of Gökova Geometry-Topology Conference 2007, Gökova: Gökova Geometry/Topology Conference (GGT), 2008, 60–81

[46]

MartinG. Khovanov homology detects T(2, 6). 2020, arXiv: 2005.02893

[47]

MightonJ. Knot theory on bipartite graphs. Ph D thesis, Toronto: University of Toronto, 2000

[48]

Milnor J. On simply connected 4-manifolds. In: Symposium Internacional de Topología Algebraica, Ciudad de México: Univ Nac. Autónoma de México 1958; 122–128

[49]

Mishra R, Staffeldt R. Polynomial invariants, knot homologies, and higher twist numbers of weaving knots W(3, n). J Knot Theory Ramifications 2021; 30(4): 2150025 (57 pp)

[50]

Morel E. Voevodsky’s proof of Milnor’s conjecture. Bull Amer Math Soc (NS) 1998; 35(2): 123–143

[51]

Mukherjee S, Przytycki J H, Silvero M, Wang X, Yang S Y. Search for torsion in Khovanov homology. Exp Math 2018; 27(4): 488–497

[52]

Murakami M, Hara M, Yamamoto M, Tani S. Fast algorithms for computing Jones polynomials of certain links. Theoret Comput Sci 2007; 374(1−3): 1–24

[53]

Murasugi K. Jones polynomials of alternating links. Trans Amer Math Soc 1986; 295(1): 147–174

[54]

Murasugi K. Jones polynomials and classical conjectures in knot theory. Topology 1987; 26(2): 187–194

[55]

MyrzakulovR. Knot universes in Bianchi type I cosmology. Adv High Energy Physics, 2012, Art ID 868203 (57 pp)

[56]

Ozsváth P, Szabó Z. On the Heegaard Floer homology of branched double-covers. Adv Math 2005; 194(1): 1–33

[57]

PrzytyckiJ. From Goeritz matrices to quasi-alternating links. In: The Mathematics of Knots, Contrib Math Comput Sci, Vol 1. Heidelberg: Springer, 2011, 257–316

[58]

Qazaqzeh K. The Khovanov homology of a family of three-column pretzel links. Commun Contemp Math 2011; 13(5): 813–825

[59]

Qazaqzeh K, Chbili N. On Khovanov homology of quasi-alternating links. Mediterr J Math 2022; 19(3): 104 (21 pp)

[60]

Qazaqzeh K, Chbili N, Qublan B. Characterization of quasi-alternating Montesinos links. J Knot Theory Ramifications 2015; 24(1): 1550002 (13 pp)

[61]

Qazaqzeh K, Yasein M, Abu-Qamar M. The Jones polynomial of rational links. Kodai Math J 2016; 39(1): 59–71

[62]

Rasmussen J. Khovanov homology and the slice genus. Invent Math 2010; 182(2): 419–447

[63]

Reidemeister K. Elementare Begründung der Knotentheorie. Abh Math Sem Univ Hamburg 1927; 5(1): 24–32

[64]

RolfsenD. Knots and Links. Mathematics Lecture Series, No 7. Berkeley, CA: Publish or Perish, Inc, 1976

[65]

ShumakovitchA. KhoHo pari package, 2003

[66]

Starkston L. The Khovanov homology of (p,−p,q) pretzel knots. J Knot Theory Ramifications 2012; 21(5): 1250056

[67]

Stoimenow A. Coefficients and non-triviality of the Jones polynomial. J Reine Angew Math 2011; 657: 1–55

[68]

Stošić M. Khovanov homology of torus links. Topology Appl 2009; 156(3): 533–541

[69]

Suzuki R. Khovanov homology and Rasmussen’s s-invariants for pretzel knots. J Knot Theory Ramifications 2010; 19(9): 1183–1204

[70]

TaitP G. On Knots I, Ⅱ, Ⅲ. In: Scientific Papers, Vol I. London: Cambridge University Press, 1898, 273–347

[71]

Taylor W R. A deeply knotted protein structure and how it might fold. Nature 2000; 406: 916–919

[72]

Thistlethwaite M B. A spanning tree expansion of the Jones polynomial. Topology 1987; 26(3): 297–309

[73]

Turner P. A spectral sequence for Khovanov homology with an application to (3, q)-torus links. Algebr Geom Topol 2008; 8(2): 869–884

[74]

Turner P. Five lectures on Khovanov homology. J Knot Theory Ramifications 2017; 26(3): 1741009 (41 pp)

[75]

Tuzun R E, Sikora A S. Verification of the Jones unknot conjecture to 22 crossings. J Knot Theory Ramifications 2018; 27: 1840009 (18 pp)

[76]

Tuzun R E, Sikora A S. Verification of the Jones unknot conjecture up to 24 crossings. J Knot Theory Ramifications 2021; 30(3): 2150020 (6 pp)

[77]

Viro O. Khovanov homology, its definitions and ramifications. Fund Math 2004; 184: 317–342

[78]

Wan L X. New presentations of a link and virtual link. J Knot Theory Ramifications 2019; 28(8): 1950051 (30 pp)

[79]

Watson L. Knots with identical Khovanov homology. Algebr Geom Topol 2007; 7: 1389–1407

[80]

Widmer T. Quasi-alternating Montesinos links. J Knot Theory Ramifications 2009; 18(10): 1459–1469

[81]

XieYZhangB Y. Classification of links with Khovanov homology minimal rank. 2019, arXiv: 1909.10032

[82]

XieYZhangB Y. On links with Khovanov homology of small ranks. 2020, arXiv: 2005.04782

[83]

YamadaS. How to find knots with unit Jones polynomials. In: Proc Conf Dedicated to Prof K Murasugi for his 70th birthday (Toronto, July 1999). Heidelberg: Springer, 2000, 355–361

[84]

ZhangM L. Research on Khovanov type homology theory. Ph D Thesis, Dalian: Dalian University of Technology, 2016 (in Chinese)

[85]

Zulli L. A matrix for computing the Jones polynomial of a knot. Topology 1995; 34(3): 717–729

RIGHTS & PERMISSIONS

Higher Education Press 2023

AI Summary AI Mindmap
PDF (946KB)

1278

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/