Composition operators on the normal weight Dirichlet type space in the unit disc

Xuejun ZHANG , Min ZHOU , Hongxin CHEN

Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 545 -552.

PDF (459KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 545 -552. DOI: 10.1007/s11464-022-1022-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Composition operators on the normal weight Dirichlet type space in the unit disc

Author information +
History +
PDF (459KB)

Abstract

Let p>0 and ν be a normal function on [0,1). In this paper, several equivalent characterizations are given for which composition operators are bounded or compact on the normal weight Dirichlet type space Dν p (D) in the unit disc.

Keywords

Composition operator / normal weight Dirichlet type space / boundedness / compactness / unit disc

Cite this article

Download citation ▾
Xuejun ZHANG, Min ZHOU, Hongxin CHEN. Composition operators on the normal weight Dirichlet type space in the unit disc. Front. Math. China, 2022, 17(4): 545-552 DOI:10.1007/s11464-022-1022-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdollahi A. Self-commutators of automorphic composition operators on the Dirichlet space. Proc Amer Math Soc 2008; 136(9): 3185–3193

[2]

Cao Y X, Kumar S, Zhou Z H. Order bounded weighted composition operators mapping into the Dirichlet type space. Chin Ann Math Ser B 2016; 37(4): 585–594

[3]

Cheng Y, Kumar S, Zhou Z H. Composition operators on Dirichlet spaces and Bloch space. Acta Math Sin (Engl Ser) 2014; 30(10): 1775–1784

[4]

CowenCMacCluer B. Composition operators on spaces of analytic functions. Boca Raton: CRC Press, 1995

[5]

Hammond C. The norm of a composition operator with linear symbol acting on the Dirichlet space. J Math Anal Appl 2005; 303(2): 499–508

[6]

Kumar R, Singh K. Essential normal of weighted composition operators on the Dirichlet space. Extracta Math 2006; 21: 249–259

[7]

Kumar S. Weighted composition operators between spaces of Dirichlet type. Rev Mat Complut 2009; 22: 469–488

[8]

Lefèvre P, Li D, Queffélec H, Rodríguez-Piazza L. Compact composition operators on the Dirichlet space and capacity of sets of contact points. J Funct Anal 2013; 264(4): 895–919

[9]

Li D, Queffélec H, Rodríguez-Piazza L. Two results on composition operators on the Dirichlet space. J Math Anal Appl 2015; 426(2): 734–746

[10]

Liu X S, Lou Z J. Weighted composition operators on weighted Dirichlet spaces. Acta Math Sci Ser B 2013; 33(4): 1119–1126

[11]

Luecking D. Bounded composition operators with closed range on the Dirichlet space. Proc Amer Math Soc 2000; 128(4): 1109–1116

[12]

Martin M, Vukotić D. Norms and spectral radii of composition operators acting on the Dirichlet space. J Math Anal Appl 2005; 304: 22–32

[13]

Mirzakarimi G, Seddighi K. Weighted composition operators on Bergman and Dirichlet spaces. Georgian Math J 1997; 4: 373–383

[14]

Patton L, Robbins M. Approximating composition operator norms on the Dirichlet space. J Math Anal Appl 2008; 339(2): 1374–1385

[15]

RudinW. Function theory in the unit ball of Cn. New York: Springer-Verlag, 1980

[16]

ShapiroJ. Composition operators and classical function theory. New York: Springer-verlag, 1993

[17]

Wang M F. Weighted composition operators between Dirichlet spaces. Acta Math Sci Ser B 2011; 31(2): 641–651

[18]

Zhang L, Zhou Z H. Hypercyclicity of weighted composition operators on a weighted Dirichlet space. Complex Var Elliptic Equ 2014; 59(7): 1043–1051

[19]

Zhang X J, Xi L H, Fan H X, Li J F. Atomic decomposition of μ-Bergman space in Cn. Acta Math Sci Ser B 2014; 34(3): 779–789

[20]

Zorboska N. Composition operators on weighted Dirichlet spaces. Proc Amer Math Soc 1998; 126: 2013–2023

[21]

ZhuK. Spaces of holomorphic functions in the unit ball. New York: Springer-Verlag, 2005

[22]

ZhuK. Operator theory in function spaces. 2nd ed. Math Surveys Monogr, Vol 138. Providence, RI: AMS, 2007

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (459KB)

549

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/