Composition operators on the normal weight Dirichlet type space in the unit disc

Xuejun ZHANG , Min ZHOU , Hongxin CHEN

Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 545 -552.

PDF (459KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 545 -552. DOI: 10.1007/s11464-022-1022-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Composition operators on the normal weight Dirichlet type space in the unit disc

Author information +
History +
PDF (459KB)

Abstract

Let p>0 and ν be a normal function on [0,1). In this paper, several equivalent characterizations are given for which composition operators are bounded or compact on the normal weight Dirichlet type space Dν p (D) in the unit disc.

Keywords

Composition operator / normal weight Dirichlet type space / boundedness / compactness / unit disc

Cite this article

Download citation ▾
Xuejun ZHANG, Min ZHOU, Hongxin CHEN. Composition operators on the normal weight Dirichlet type space in the unit disc. Front. Math. China, 2022, 17(4): 545-552 DOI:10.1007/s11464-022-1022-1

登录浏览全文

4963

注册一个新账户 忘记密码

1 Introduction

Let C denote the complex plane, and D={z: | z|<1} denote the unit disc in C. The class of analytic functions on D is denoted by H(D). Suppose that dv denotes the normalized Lebesgue measure on D.

Definition 1.1 A positive continuous function on [0,1) is called normal if there exist constants 0ρ 0<1 and ba>0 such that ν(ρ)(1 ρ2)b is increasing and ν(ρ)(1 ρ2)a is decreasing on [ρ0, 1). For example, ν (ρ)=(1 ρ2)α(log e1 ρ2) β (log loge21ρ2) γ (α>0,βandγreal),

ν1(ρ )={ ( (2n2)!!(2n 1)!!)ba(1ρ 2) a, n1n ρ2<2n 212n(n+ 1),((2n)!!(n+1 )(2n+1)!!)ba(1 ρ2)b, 2n2 12n(n+1 )ρ 2<n n+1,

n=1,2,,b>a>0, are such normal functions.

For the convenience of proof, let ρ0= 0 in this paper.

Definition 1.2 Let p>0 and ν be a normal function on [0,1). If hH(D ) and

| | h|| Dνp=|h(0)|+{ D| h(ω) | p ν(|ω|)1 | ω|2 dv(ω)} 1p<,

then we say that h belongs to the normal weight Dirichlet type space Dνp(D).

In particular, Dνp(D) is the Dirichlet type space Dα p (D) when ν(ρ)=(1 ρ2)α+1( α>1 ). Further, Dν p (D) is the Dirichlet space when ν(ρ)= 1ρ2 and p=2.

Definition 1.3 Let φ :DD be an analytic mapping. Then φ induces a linear operator C φh=hφ on H(D). We say that C φ is a composition operator on H(D).

Composition operators can act on the function space of various support sets to itself or between different function spaces. There have been a lot of references in this field, and many of them involve in composition operator problems on the Dirichlet space or the weighted Dirichlet space (for example, [1-14,16-18,20]). In each case, the main purpose is to find out the relationship between the properties of Cφ and the induced symbol φ. The results closely related to this paper are as follows:

Theorem 1.1 [4, Theorem 3.5]  Let μ be a positive function on the unit interval with Dμ(1 | z|2)dv(z )< such that, for each q>1, there is a constant k=k(q) satisfying μ (s)kν(t) whenever sqt. For p1, suppose Y is the Banach space of all analytic functions on the disc for which the norm given by

| | f||p= |f(0) |p+D| f(z)|pμ (1 | z|2)dv(z )<.

If φ is an automorphism of the unit disc, then C φ is a bounded operator on Y.

Theorem 1.2 [4, p142]  For α >1, let φ:DD be an analytic mapping. Define the measure μα on D by dμ α =|φ(ω)|2(1 |ω|2)α dv(ω). Then

(1) Cφ is bounded on Dα2(D) if and only if μα φ 1S(ξ,h)=O(hα+2),

(2) Cφ is compact on Dα2(D) if and only if supξ Dμα φ 1S(ξ,h)=o(hα+2) (h0+).

Theorem 1.3 [10, Theorem 2.5 and Theorem 3.4] For α>0, let φ D α2(D) such that φ(D) D and E(ξ,r) ={ω D: |ωξ|<r,ξD}. Then

(1) Cφ is bounded on Dα2(D) if and only if

sup ξ DE( ξ,r) φ(ω)=w(1|ω|2) α dv(w )=O(rα),

(2) Cφ is compact on Dα2(D) if and only if

sup ξ DE( ξ,r) φ(ω)=w(1|ω|2) α dv(w )=o(rα)(r 0+).

On the basis of the above results, we give some equivalent characterizations for which composition operators are bounded or compact on Dν p (D) for the general normal weight on [0,1) and all p>0 in this paper.

In the following, if there exist constants l>0 and m>0 such that lQPmQ, then we say that P and Q are equivalent, written as “PQ”. If there exists a constant l>0 such that PlQ (PlQ), then we write “P Q” (“PQ”).

2 Some lemmas

For ωD, let φ ω be the involutive automorphism of D with φ ω (0)=ω and φ ω (ω)=0. For ρ >0 and ω D, we define the Bergman disc D(ω,ρ )={w:w Dand β( w,ω)<ρ} on D, where

β(w,ω)=12log 1+| φω(w)|1|φω(w) |.

For θ[0,2π] and t>0, let S( eiθ,t)={z:z Dand |1z eiθ|<t}. We know that S(e iθ, t)=D when t2. Therefore, we only need to consider the smaller t.

Lemma 2.1 [15]  Let ϵ>0 and δ> 1. Then

D(1|ω|2)δ |1 wω¯|2+δ+ϵdv(ω)1(1|w|2)ϵf orallwD.

This result comes from Proposition 1.4.10 in [15].

Lemma 2.2 [21]  There exists a positive integer N such that for any 0<r1 we can find a sequence {ak} D with the following properties: D=k=1D (ak, r), and each point zD belongs to at most N of the sets D( ak,4r).

These results come from Theorem 2.23 in [21].

Lemma 2.3 [19]  Let r>0 and ν be a normal function on [0,1). Then

(1) ν(|w|)ν(|ω|) when wD and ω D(w, r),

(2) ν(|w|)ν(|ω|) (1 | w|21 | ω|2) a+(1 |w|2 1 |ω | 2) b for all w,ωD.

These results come from Lemma 2.2 in [19].

Lemma 2.4  Let p>0 and ν be a normal function on [0,1). Suppose that φ is an analytic self mapping on D, and φDν p (D). If g is a nonnegative measurable function on D, then

Dg(ω) dμ p,ν,φ(ω)=Dg [φ(ω)] |φ(ω ) | pν(|ω|)1|ω|2 dv(ω),

where

μp,ν ,φ(A)= φ1(A ) | φ(ω)|pν( | ω|)1|ω|2 dv(ω),

A is any Borel measurable set on D.

Proof The condition φ Dνp(D) guarantees that |φ(ω ) | pν(|ω|)1|ω|2 dv(ω) is a finite measure on D. This is a general variable substitution formula, which appears in different forms on different occasions. Detailed proof is omitted.

3 Main results and proofs

Theorem 3.1  Let p>0 and ν be a normal function on [0,1). Suppose that φ is an analytic self mapping on D, and φDν p (D). Given r>0 and a finite Borel measure dμp,ν ,φ(z)= dm p,ν,φ φ 1(z), where

dmp,ν,φ(z)=| φ(z)|p ν(|z|)1 |z|2dv(z ) (zD).

Then the following three conditions are equivalent:

(1) μp,ν,φ[S( eiθ,t)]t ν(1t) for all θ[0,2 π] and 0<t<1/2;

(2) μp,ν,φ[D(w,r )](1 | w|2)ν (|w|) for all wD;

(3) Cφ is a bounded operator on Dν p (D).

Proof  (1)(2).

Let μp,ν,φ[S( eiθ,t)]t ν(1t) for all θ[0,2 π] and 0<t<1/2.

For any 0wD, let w/|w|=e iθ. When zD(w ,r), it follows from Proposition 4.5 in [22] that

|1zeiθ||1zw¯ |+|zw¯ zw¯ |w|| 11tanh r(1|w|2)+1|w|< 2(1|w|2)1 tanhr.

This shows that D(w,r) S[ eiθ,2(1 | w|2)/(1tanhr)].

Otherwise, recall the definition of normal function and

1 2(1 | w|2) 1tanh r<|w|2< |w| ν[12(1|w|2)1tanhr](4 1tanh r)bν (|w|),

When |w|2>(3+tanhr )/4, we have 2(1|w|2)/(1tanhr)< 1/ 2. Therefore, we may obtain that

μ p,ν,φ[D( w,r) ] μp ,ν,φ[S(e iθ, 2(1|w|2)1 tanhr)] 2(1|w|2)1 tanhrν[1 2(1|w|2)1 tanhr] ( 1|w|2)ν( | w|).

When |w|2(3+tanhr )/4, we have (1 |w|2)ν( | w|) 1tanh r4ν(3+tanhr4)

μp ,ν,φ[D(w,r )]μ p,ν,φ(D)1 (1 | w|2)ν (|w|).

This shows that μp,ν ,φ[D(w ,r)](1|w|2)ν(|w|) for all wD.

(2) (3).

Let μp,ν,φ[D(w,r )](1 | w|2)ν (|w|) for all wD.

For any fDν p (D), by Lemma 2.20 and Lemma 2.24 in [21], Lemmas 2.2−2.4, we have

|| Cφf|| Dνp p= D| f[φ(z )] | p| φ(z)|p ν(|z|)1 |z|2dv(z ) =D| f(z)|p dμ p,ν,φ(z) k=1 D(ak,r)| f(z)|p dμ p,ν,φ(z) k=1μp,ν ,φ[D(ak,r) ]sup zD(ak, r) | f(z)|p k=1ν (|ak|)1 | ak|2supz D( ak,r)D( z,r)|f (w)|p dv(w)k=1ν(|ak|)1 | ak|2 D(ak,2r )| f(w)|p dv(w) k=1 D(ak,4r ) | f(w)|pν (|w|)dv(w)1|w|2N D |f(w ) | pν(|w|) dv(w )1|w | 2 =N | | f|| Dνp p .

This means that C φ is bounded on Dν p (D).

(3) (1).

Let Cφ be bounded on Dν p (D). For any θ[0,2 π] and 0<t<1/2, we take

f t,θ(z) =tbp +1ν1 p( 1t)[1 (1t)zeiθ] b+1p (zD).

When zS( eiθ,t), we have |1(1t)zeiθ| |1 zeiθ|+|zeiθ( 1t)zeiθ|<2t. By the boubdedness of C φ on Dν p (D) and Lemmas 2.1 and 2.2, we have

(b+1 ) pμp,ν ,φ[S(eiθ,t)]p p2b+1+2p tν(1t) S (eiθ,t)|ft,θ( z)|p dμ p,ν,φ(z) D|ft,θ( z)|p dμ p,ν,φ(z) Dtb+pν(1t)|1 z(1 t)eiθ|1+b+pν (|z|)1 | z|2 dv(z) Dtb+pa(1|z|2)a1 |1 z(1 t)eiθ|1+b+pdv(z)+D tp(1 |z|2)b 1 | 1z(1t) e iθ|1+b+pdv(z) 1.

This shows that μp,ν ,φ[S(eiθ,t)] tν(1t) for all θ [0,2 π] and 0<t<1/2.

This proof is complete.□

Theorem 3.2  Let p>0 and ν be a normal function on [0,1 ). Suppose that φ is an analytic self mapping on D, and φ D νp(D). Give r>0 and a finite Borel measure dμ p,ν,φ(z) =dmp,ν,φφ1(z), where

dmp,ν,φ(z)=| φ(z)|p ν(|z|)1 |z|2dv(z ) (zD).

Then the following three conditions are equivalent:

(1) supθ[0,2 π]μp,ν,φ[S( eiθ,t)]=o [tν(1t )] (t0 +);

(2) μp,ν,φ[D(w,r )]=o[(1|w|2)ν(|w|)] (|w|1 );

(3) Cφ is a compact operator on Dν p (D).

Proof  (1)(2).

Let supθ[0,2 π]μp,ν,φ[S( eiθ,t)]=o [tν(1t )] (t0 +). For any wD, let w/|w|=eiθ when |w|2>(3+tanhr )/4. It follows Theorem 3.1 that

μ[D( w,r) ](1|w|2)ν(|w|)μ[S(e iθ, 2(1|w|2)1 tanhr)]/(1|w|2)ν(|w|).

When |w|1 , we have 2(1 | w|2) 1tanh r 0. Therefore, we have

lim|w|1 μ[D(w,r )] (1 | w|2)ν (|w|)=0.

(2) (3).

If μ[D(w,r )]=o[(1|w|2)ν(|w|)] (|w|1 ), then for any ε >0, there exists a 0<δ0< 1 such that

μ[D( w,r) ](1|w|2)ν(|w|)<ε,wDand|w|>δ0.

Suppose that { fj} is any analytic function sequence which converges to 0 uniformly on any compact subset of D and || fj||Dν p1 for all j{1 ,2,}. We take the sequence {ak} in Lemma 2.2, and we may let |a k| 1(k ). Therefore, there is a positive integer K0 such that | ak|>δ0 when k>K0. Let E=k=1 K0D(ak,r). By (3.1), Lemmas 2.2−2.4, Lemma 2.20 and Lemma 2.24 in [21], we have

|| Cφf j|| Dνp p= D| fj(z)|pdμ p,ν,φ(z) k=1 D(ak,r)| fj(z)|pdμ p,ν,φ(z) k=1K0μ p,ν,φ(D)sup z E¯|f j(z)|p+ k=K0+1μp,ν ,φ[D(ak,r) ]sup zD(ak, r) | fj(z)|p k= 1K0μp,ν ,φ(D)supz E¯|fj(z) |p +εk=K0+ 1 ν(| ak|)1 |ak|2supzD(ak, r) D (z,r )| fj(w)|pdv(w) k=1K0μ p,ν,φ(D)sup z E¯|f j(z)|p+ ε k= K0+1D( ak,4r)| fj(w)|pν(|w|) dv(w )1|w | 2 k=1K0μ p,ν,φ(D)sup z E¯|f j(z)|p+ NεD |fj(w ) | pν(|w|) dv(w )1|w | 2 k=1K0μ p,ν,φ(D)sup z E¯|f j(z)|p+ Nε Nε (j).

By the arbitrariness of ε, we have limj || Cφf j| | Dνp=0. This shows that Cφ is a compact operator on Dν p (D).

(3) (1).

Let Cφ be compact on Dν p (D). Let { tj} (0,1 /2 ) be any sequence tending to zero. For any θ[0,2 π], we take a function sequence

f j,θ(z) =tjbp +1ν1 p( 1tj)[1 (1t j)zeiθ]1+ bp(zD ).

Then {fj,θ} is an analytic function sequence on D, which converges to 0 uniformly on any compact subset of D and ||f j,θ | |Dν p1 for all j=1,2, and θ[0,2 π].

By Lemma 2.4 and the compactness of Cφ on Dν p (D), we have

supθ [0, 2π](b +1) pμ[S( eiθ,tj)] pp21+b+2p tjν(1tj) supθ[0,2 π] S ( eiθ,tj)| fj ,θ(z)|pdμ p,ν,φ(z) sup θ[0,2π] D| fj ,θ(z)|pdμ p,ν,φ(z)= sup θ[0,2π]|| fj,θ| |Dν pp0(j).

This shows that supθ [0, 2π]μ[S ( eiθ,t)]=o[tν (1t)] ( t0 +).

This proof is complete.□

References

[1]

Abdollahi A. Self-commutators of automorphic composition operators on the Dirichlet space. Proc Amer Math Soc 2008; 136(9): 3185–3193

[2]

Cao Y X, Kumar S, Zhou Z H. Order bounded weighted composition operators mapping into the Dirichlet type space. Chin Ann Math Ser B 2016; 37(4): 585–594

[3]

Cheng Y, Kumar S, Zhou Z H. Composition operators on Dirichlet spaces and Bloch space. Acta Math Sin (Engl Ser) 2014; 30(10): 1775–1784

[4]

CowenCMacCluer B. Composition operators on spaces of analytic functions. Boca Raton: CRC Press, 1995

[5]

Hammond C. The norm of a composition operator with linear symbol acting on the Dirichlet space. J Math Anal Appl 2005; 303(2): 499–508

[6]

Kumar R, Singh K. Essential normal of weighted composition operators on the Dirichlet space. Extracta Math 2006; 21: 249–259

[7]

Kumar S. Weighted composition operators between spaces of Dirichlet type. Rev Mat Complut 2009; 22: 469–488

[8]

Lefèvre P, Li D, Queffélec H, Rodríguez-Piazza L. Compact composition operators on the Dirichlet space and capacity of sets of contact points. J Funct Anal 2013; 264(4): 895–919

[9]

Li D, Queffélec H, Rodríguez-Piazza L. Two results on composition operators on the Dirichlet space. J Math Anal Appl 2015; 426(2): 734–746

[10]

Liu X S, Lou Z J. Weighted composition operators on weighted Dirichlet spaces. Acta Math Sci Ser B 2013; 33(4): 1119–1126

[11]

Luecking D. Bounded composition operators with closed range on the Dirichlet space. Proc Amer Math Soc 2000; 128(4): 1109–1116

[12]

Martin M, Vukotić D. Norms and spectral radii of composition operators acting on the Dirichlet space. J Math Anal Appl 2005; 304: 22–32

[13]

Mirzakarimi G, Seddighi K. Weighted composition operators on Bergman and Dirichlet spaces. Georgian Math J 1997; 4: 373–383

[14]

Patton L, Robbins M. Approximating composition operator norms on the Dirichlet space. J Math Anal Appl 2008; 339(2): 1374–1385

[15]

RudinW. Function theory in the unit ball of Cn. New York: Springer-Verlag, 1980

[16]

ShapiroJ. Composition operators and classical function theory. New York: Springer-verlag, 1993

[17]

Wang M F. Weighted composition operators between Dirichlet spaces. Acta Math Sci Ser B 2011; 31(2): 641–651

[18]

Zhang L, Zhou Z H. Hypercyclicity of weighted composition operators on a weighted Dirichlet space. Complex Var Elliptic Equ 2014; 59(7): 1043–1051

[19]

Zhang X J, Xi L H, Fan H X, Li J F. Atomic decomposition of μ-Bergman space in Cn. Acta Math Sci Ser B 2014; 34(3): 779–789

[20]

Zorboska N. Composition operators on weighted Dirichlet spaces. Proc Amer Math Soc 1998; 126: 2013–2023

[21]

ZhuK. Spaces of holomorphic functions in the unit ball. New York: Springer-Verlag, 2005

[22]

ZhuK. Operator theory in function spaces. 2nd ed. Math Surveys Monogr, Vol 138. Providence, RI: AMS, 2007

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (459KB)

582

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/