Propagation of chaos and conditional McKean-Vlasov SDEs with regime-switching

Jinghai SHAO , Dong WEI

Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 731 -746.

PDF (271KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (4) : 731 -746. DOI: 10.1007/s11464-021-0960-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Propagation of chaos and conditional McKean-Vlasov SDEs with regime-switching

Author information +
History +
PDF (271KB)

Abstract

We investigate a particle system with mean field interaction living in a random environment characterized by a regime-switching process. The switching process is allowed to be dependent on the particle system. The well-posedness and various properties of the limit conditional McKean-Vlasov SDEs are studied, and the conditional propagation of chaos is established with explicit estimate of the convergence rate.

Keywords

Regime-switching / propagation of chaos / Wasserstein distance / conditional McKean-Vlasov SDEs / rate of convergence

Cite this article

Download citation ▾
Jinghai SHAO, Dong WEI. Propagation of chaos and conditional McKean-Vlasov SDEs with regime-switching. Front. Math. China, 2022, 17(4): 731-746 DOI:10.1007/s11464-021-0960-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andreis L , Pra P D , Fischer M . McKean-Vlasov limit for interacting systems with simultaneous jumps. Stoch Anal Appl, 2018, 36: 960- 995

[2]

Budhiraja A , Kira E , Saha S . Central limit results for jump diffusions with mean field interaction and a common factor. Stoch Anal Appl, 2017, 35: 767- 802

[3]

Carmona R , Delarue F . Probabilistic Theory of Mean Field Games with Applications Ⅱ. Probab Theory Stoch Model, Vol 84. Berlin: Springer, 2018

[4]

Carmona R , Delarue F , Lacker D . Mean field games with common noise. Ann Probab, 2016, 44: 3740- 3803

[5]

Carmona R , Zhu X N . A probabilistic approach to mean field games with major and minor players. Ann Appl Probab, 2016, 26: 1535- 1580

[6]

Djete M F , Possamaï D , Tan X L . McKean-Vlasov optimal control: the dynamic programming principle. arXiv: 1907.08860

[7]

Erny X , Löcherbach E , Loukianova D . White-noise driven conditional McKean-Vlasov limits for systems of particles with simultaneous and random jumps. arXiv: 2103.04100

[8]

Fournier N , Guillin A . On the rate of convergence in Wasserstein distance of the empirical measure. Probab Theory Related Fields, 2014, 162: 707- 738

[9]

Gärtner J . On the McKean-Vlasov limit for interacting diffusions. Math Nachr, 1988, 137: 197- 248

[10]

Graham C . McKean-Vlasov Itô-Skorohod equations, and nonlinear diffusions with discrete jump sets. Stochastic Process Appl, 1992, 40: 69- 82

[11]

Graham C , Méléard S . Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann Probab, 1997, 25: 115- 132

[12]

Hammersley W R P , Siska D , Szpruch L . Weak existence and uniqueness for McKean-Vlasov SDEs with common noise. Ann Probab, 2021, 49: 527- 555

[13]

Huang X , Wang F -Y . Distribution dependent SDEs with singular coefficients. Stochastic Process Appl, 2019, 129: 4747- 4770

[14]

Kac M . Foundations of Kinetic Theory. Berkeley: Univ of California Press, 2020, 173- 200

[15]

McKean J , Henry P . A class of Markov processes associated with nonlinear parabolic equations. Proc Natl Acad Sci USA, 1996, 56: 1907

[16]

Méléard S . Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In: Talay D, Tubaro L, eds. Probabilistic Models for Nonlinear Partial Differential Equations. Lecture Notes in Math, Vol 1627. Berlin: Springer, 1996 42- 95

[17]

Nguyen D H , Yin G , Zhu C . Certain properties related to well posedness of switching diffusions. Stochastic Process Appl, 2017, 127: 3135- 3158

[18]

Nguyen S L , Yin G , Hoang T A . On laws of large numbers for systems with mean-field interactions and Markovian switching. Stochastic Process Appl, 2020, 130: 262- 296

[19]

Oelschlager K . A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann Probab, 1984, 458- 479

[20]

Pham H , Wei X L . Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics. SIAM J Control Optim, 2017, 55: 1069- 1101

[21]

Pinsky M , Pinsky R G . Transience/recurrence and central limit theorem behavior for diffusions in random temporal environments. Ann Probab, 1993, 21: 433- 452

[22]

Shao J H . Criteria for transience and recurrence of regime-switching diffusion processes. Electron J Probab, 2015, 20: 1- 15

[23]

Shao J H . Strong solutions and strong Feller properties for regime-switching diffusion processes in an infinite state space. SIAM J Control Optim, 2015, 53: 2462- 2479

[24]

Shao J H , Zhao K . Continuous dependence for stochastic functional differential equations with state-dependent regime-switching on initial values. Acta Math Sin (Engl Ser), 2021, 37: 389- 407

[25]

Sznitman A S . Topics in propagation of chaos. In: Burkholder D L, Pardoux E, Sznitman A, eds. Ecole d’Eté de Probabilités de Saint-Flour XIX–1989. Lecture Notes in Math, Vol 1464. Berlin: Springer, 1991 165- 251

[26]

Yin G , Zhu C . Hybrid Switching Diffusions: Properties and Applications. New York: Springer, 2009

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (271KB)

530

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/