Symmetric Hermitian decomposability criterion, decomposition, and its applications

Guyan NI, Bo YANG

PDF(351 KB)
PDF(351 KB)
Front. Math. China ›› 2022, Vol. 17 ›› Issue (5) : 961-986. DOI: 10.1007/s11464-021-0927-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Symmetric Hermitian decomposability criterion, decomposition, and its applications

Author information +
History +

Abstract

The Hermitian tensor is an extension of Hermitian matrices and plays an important role in quantum information research. It is known that every symmetric tensor has a symmetric CP-decomposition. However, symmetric Hermitian tensor is not the case. In this paper, we obtain a necessary and sufficient condition for symmetric Hermitian decomposability of symmetric Hermitian tensors. When a symmetric Hermitian decomposable tensor space is regarded as a linear space over the real number field, we also obtain its dimension formula and basis. Moreover, if the tensor is symmetric Hermitian decomposable, then the symmetric Hermitian decomposition can be obtained by using the symmetric Hermitian basis. In the application of quantum information, the symmetric Hermitian decomposability condition can be used to determine the symmetry separability of symmetric quantum mixed states.

Keywords

Hermitian tensor / tensor decomposition / symmetric Hermitian decomposition / quantum mixed states / quantum entanglement

Cite this article

Download citation ▾
Guyan NI, Bo YANG. Symmetric Hermitian decomposability criterion, decomposition, and its applications. Front. Math. China, 2022, 17(5): 961‒986 https://doi.org/10.1007/s11464-021-0927-4

References

[1]
Bohnet-Waldraff F, Braun D, Giraud O. Tensor eigenvalues and entanglement of symmetric states. Phys Rev A, 2016, 94: 042324
CrossRef Google scholar
[2]
Bohnet-Waldraff F, Braun D, Giraud O. Entanglement and the truncated moment problem. Phys Rev A, 2017, 96: 032312
CrossRef Google scholar
[3]
Brachat J, Comon P, Mourrain B, Tsigaridas E. Symmetric tensor decomposition. Linear Algebra Appl, 2010, 433: 1851–1872
CrossRef Google scholar
[4]
Breiding P, Vannieuwenhoven N. A Riemannian trust region method for the canonical tensor rank approximation problem. SIAM J Optim, 2018, 28: 2435–2465
CrossRef Google scholar
[5]
Chang K-C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416–422
CrossRef Google scholar
[6]
Chiantini L, Ottaviani G, Vannieuwenhoven N. Effective criteria for specific identifiability of tensors and forms. SIAM J Matrix Anal Appl, 2017, 38: 656–681
CrossRef Google scholar
[7]
Comon P, Golub G, Lim L -H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl, 2008, 30: 1254–1279
CrossRef Google scholar
[8]
Comon P, Lim L-H, Qi Y, Ye K. Topology of tensor ranks. Adv Math, 2020, 367: 107–128
CrossRef Google scholar
[9]
Derksen H, Friedland S, Lim L-H, Wang L. Theoretical and computational aspects of entanglement. arXiv: 1705.07160
[10]
Domanov I, Lathauwer L De.. Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL. SIAM J Matrix Anal Appl, 2015, 36: 1567–1589
CrossRef Google scholar
[11]
Dressler M, Nie J, Yang Z. Separability of Hermitian tensors and PSD decompositions. Linear Algebra Appl, doi.org/10.1080/03081087.2021.1965078
[12]
Fu T, Jiang B, Li Z. On decompositions and approximations of conjugate partial-symmetric complex tensors. arXiv: 1802.09013
[13]
Galuppi F, Mella M. Identifiability of homogeneous polynomials and Cremona transformations. J Reine Angew Math, 2019, 757: 279–308
CrossRef Google scholar
[14]
Giraud O, Braun D, Baguette D, Bastin T, Martin J. Tensor representation of spin states. Phys Rev Lett, 2015, 114: 080401
CrossRef Google scholar
[15]
Horodecki M, Horodecki P. Reduction criterion of separability and limits for a class of distillation protocols. Phys Rev A, 1999, 59: 4206–4216
CrossRef Google scholar
[16]
Jiang B, Li Z, Zhang S. Characterizing real-valued multivariate complex polynomials and their symmetric tensor representations. SIAM J Matrix Anal Appl, 2016, 37: 381–408
CrossRef Google scholar
[17]
Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev, 2009, 51: 455–500
CrossRef Google scholar
[18]
Kruskal J. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl, 1977, 18: 95–138
CrossRef Google scholar
[19]
Landsberg J M. Tensors: Geometry and Applications. Grad Stud Math, Vol 128. Providence: Amer Math Soc, 2012
[20]
Landsberg J M, Teitler Z. On the ranks and border ranks of symmetric tensors. Found Comput Math, 2010, 10: 339–366
CrossRef Google scholar
[21]
Lathauwer L De.. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J Matrix Anal Appl, 2006, 28: 642–666
CrossRef Google scholar
[22]
Lathauwer L De, Moor B De, Vandewalle J. Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition. SIAM J Matrix Anal Appl, 2004, 26: 295–327
CrossRef Google scholar
[23]
Li Y, Ni G. Separability discrimination and decomposition of m-partite quantum mixed states. Phys Rev A, 2020, 102: 012402
CrossRef Google scholar
[24]
Li Z, Nakatsukasa Y, Soma T, Uschmajew A. On orthogonal tensors and best rank-one approximation ratio. SIAM J Matrix Anal Appl, 2018, 39: 400–425
CrossRef Google scholar
[25]
Lim L-H. Tensors and hypermatrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Discrete Math Appl (Boca Raton). Boca Raton: CRC Press, 2014, 15-1–15-30
[26]
Milazzo N, Braun D, Giraud O. Truncated moment sequences and a solution to the channel separability problem. arXiv: 2006.15003
[27]
Ni G. Hermitian tensor and quantum mixed state. arXiv: 1902.02640
[28]
Ni G, Qi L, Bai M. Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J Matrix Anal Appl, 2014, 35: 73–87
CrossRef Google scholar
[29]
Nie J. Generating polynomials and symmetric tensor decompositions. Found Comput Math, 2017, 17: 423–465
CrossRef Google scholar
[30]
Nie J. Low rank symmetric tensor approximations. SIAM J Matrix Anal Appl, 2017, 38: 1517–1540
CrossRef Google scholar
[31]
Nie J, Yang Z. Hermitian tensor decompositions. SIAM J Matrix Anal Appl, 2020, 41(3): 1115–1144
CrossRef Google scholar
[32]
Nie J, Zhang X. Positive maps and separable matrices. SIAM J Optim, 2018, 26(2): 1236-1256
CrossRef Google scholar
[33]
Qi L, Xu C, Xu Y. Nonnegative tensor factorization, completely positive tensors and a hierarchical elimination algorithm. SIAM J Matrix Anal Appl, 2014, 35: 1227–1241
CrossRef Google scholar
[34]
Qi L, Zhang G, Braun D, Bohnet-Waldraff F, Giraud O. Regularly decomposable tensors and classical spin states. Commun Math Sci, 2017, 15: 1651–1665
CrossRef Google scholar
[35]
Qi L, Zhang G, Ni G. How entangled can a multi-party system possibly be? Phys Lett A, 2018, 382: 1465–1471
CrossRef Google scholar
[36]
Sidiropoulos N, Bro R. On the uniqueness of multilinear decomposition of N-way arrays. J Chemometrics, 2000, 14: 229–239
CrossRef Google scholar
[37]
Sorber L, Barel M Van, Lathauwer L De.. Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(Lr, Lr, 1) terms, and a new generalization. SIAM J Optim, 2013, 23: 695–720
CrossRef Google scholar
[38]
Wei T-C, Goldbart P M. Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys Rev A, 2003, 68: 042307
CrossRef Google scholar
[39]
Zhou A, Fan J. Completely positive tensor recovery with minimal nuclear value. Comput Optim Appl, 2018, 70: 419–441
CrossRef Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(351 KB)

Accesses

Citations

Detail

Sections
Recommended

/