Proper resolutions and Gorensteinness in extriangulated categories

Jiangsheng HU , Dondong ZHANG , Panyue ZHOU

Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 95 -117.

PDF (317KB)
Front. Math. China ›› 2021, Vol. 16 ›› Issue (1) : 95 -117. DOI: 10.1007/s11464-021-0887-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Proper resolutions and Gorensteinness in extriangulated categories

Author information +
History +
PDF (317KB)

Abstract

Let (,E,s) be an extriangulated category with a proper class ξ of E-triangles, and W an additive full subcategory of (,E,s). We provide a method for constructing a proper Wξ-resolution (resp., coproper Wξ- coresolution) of one term in an E-triangle in ξ from that of the other two terms. By using this way, we establish the stability of the Gorenstein category GWξ in extriangulated categories. These results generalize the work of Z. Y. Huang [J. Algebra, 2013, 393: 142{169] and X. Y. Yang and Z. C. Wang [Rocky Mountain J. Math., 2017, 47: 1013{1053], but the proof is not too far from their case. Finally, we give some applications about our main results.

Keywords

Proper resolution / coproper coresolution / extriangulated categories / Gorenstein categories

Cite this article

Download citation ▾
Jiangsheng HU, Dondong ZHANG, Panyue ZHOU. Proper resolutions and Gorensteinness in extriangulated categories. Front. Math. China, 2021, 16(1): 95-117 DOI:10.1007/s11464-021-0887-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227: 268–361

[2]

Hu J S, Zhang D D, Zhou P Y. Proper classes and Gorensteinness in extriangulated categories. J Algebra, 2020, 551: 23–60

[3]

Huang Z Y. Proper resolutions and Gorenstein categories. J Algebra, 2013, 393: 142–169

[4]

Ma X, Zhao T W, Huang Z Y. Resolving subcategories of triangulated categories and relative homological dimension. Acta Math Sinica, 2017, 33: 1513–1535

[5]

Nakaoka N, Palu Y. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah Topol Géom Différ Catég, 2019, 60(2): 117–193

[6]

Ren W, Liu Z K. Gorenstein homological dimensions for triangulated categories. J Algebra, 2014, 410: 258–276

[7]

Sather-Wagstaff S, Sharif T,White D.Stability of Gorenstein categories. J Lond Math Soc, 2008, 77: 481–502

[8]

Wang Z P,Guo S T, Liang C L. Stability of Gorenstein objects in triangulated categories. Sci Sin Math (Chin Ser), 2017, 47: 349–356(in Chinese)

[9]

Yang X Y. Notes on proper class of triangles. Acta Math Sinica (Engl Ser), 2013, 29: 2137–2154

[10]

Yang X Y. Model structures on triangulated categories. Glasg Math J, 2015, 57: 263–284

[11]

Yang X Y, Wang Z C. Proper resolutions and Gorensteiness in triangulated categories. Rocky Mountain J Math, 2017, 47: 1013–1053

[12]

Zhou P Y, Zhu B. Triangulated quotient categories revisited. J Algebra, 2018, 502: 196–232

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (317KB)

628

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/