Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces

Xianjie YAN , Dachun YANG , Wen YUAN

Front. Math. China ›› 2020, Vol. 15 ›› Issue (4) : 769 -806.

PDF (464KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (4) : 769 -806. DOI: 10.1007/s11464-020-0849-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces

Author information +
History +
PDF (464KB)

Abstract

Let X be a ball quasi-Banach function space satisfying some mild additional assumptions and HX(n) the associated Hardy-type space. In this article, we first establish the finite atomic characterization of HX(n). As an application, we prove that the dual space of HX(n) is the Campanato space associated with X. For any given α(0,1] and s+, using the atomic and the Littlewood–Paley function characterizations of HX(n),we also establish its s-order intrinsic square function characterizations, respectively, in terms of the intrinsic Lusin-area function Sα,s,the intrinsic g-function gα,s,and the intrinsic gλ-function gλ,α,s, where λ coincides with the best known range.

Keywords

Ball quasi-Banach function space / Hardy space / finite atomic characterization / Campanato space / intrinsic square function

Cite this article

Download citation ▾
Xianjie YAN, Dachun YANG, Wen YUAN. Intrinsic square function characterizations of Hardy spaces associated with ball quasi-Banach function spaces. Front. Math. China, 2020, 15(4): 769-806 DOI:10.1007/s11464-020-0849-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett C, Sharpley R. Interpolation of Operators. Pure Appl Math, Vol 129. Boston: Academic Press, 1988

[2]

Bownik M. Anisotropic Hardy Spaces and Wavelets. Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc, 2003

[3]

Chang D-C, Wang S, Yang D, Zhang Y. Littlewood–Paley characterizations of Hardytype spaces associated with ball quasi-Banach function spaces. Complex Anal Oper Theory, 2020, 14: Paper No 40 (33 pp)

[4]

Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Appl Numer Harmon Anal. Heidelberg: Birkhäuser/Springer, 2013

[5]

Cruz-Uribe D, Wang L-A D. Variable Hardy spaces. Indiana Univ Math J, 2014, 63: 447–493

[6]

Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193

[7]

Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Math Notes, Vol 28. Princeton: Princeton Univ Press, 1982

[8]

García-Cuerva J. Weighted Hp spaces. Dissertationes Math (Rozprawy Mat), 1979, 162: (63 pp)

[9]

Grafakos L. Classical Fourier Analysis. 3rd ed. Grad Texts in Math, Vol 249. New York: Springer, 2014

[10]

Huang J, Liu Y. Some characterizations of weighted Hardy spaces. J Math Anal Appl, 2010, 363: 121–127

[11]

Huang L, Liu J, Yang D, Yuan W. Dual spaces of anisotropic mixed-norm Hardy spaces. Proc Amer Math Soc, 2019, 147: 1201–1215

[12]

Jiao Y, Zuo Y, Zhou D, Wu L. Variable Hardy–Lorentz spaces Hp(⋅),q(ℝn).Math Nachr, 2019, 292: 309–349

[13]

Lerner A K. Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals. Adv Math, 2011, 226: 3912–3926

[14]

Lerner A K. On sharp aperture-weighted estimates for square functions. J Fourier Anal Appl, 2014, 20: 784–800

[15]

Liang Y, Yang D. Musielak–Orlicz Campanato spaces and applications. J Math Anal Appl, 2013, 406: 307–322

[16]

Liang Y, Yang D. Intrinsic square function characterizations of Musielak–Orlicz Hardy spaces. Trans Amer Math Soc, 2015, 367: 3225–3256

[17]

Lindenstrauss J, Tzafriri L. Classical Banach Spaces. II. Function Spaces. Ergeb Math Grenzgeb, Vol 97. Berlin: Springer-Verlag, 1979

[18]

Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. J Funct Anal, 2012, 262: 3665–3748

[19]

Nakai E, Sawano Y. Orlicz–Hardy spaces and their duals. Sci China Math, 2014, 57: 903–962

[20]

Okada S, Ricker W J, Sánchez Pérez E A. Optimal Domain and Integral Extension of Operators. Acting in Function Spaces. Oper Theory Adv Appl, Vol 180. Basel: Birkhäuser, 2008

[21]

Sawano Y. Theory of Besov Spaces. Dev Math, Vol 56. Singapore: Springer, 2018

[22]

Sawano Y, Ho K-P, Yang D, Yang S. Hardy spaces for ball quasi-Banach function spaces. Dissertationes Math (Rozprawy Mat.), 2017, 525: 1–102

[23]

Sawano Y, Tanaka H. The Fatou property of block spaces. J Math Sci Univ Tokyo, 2015, 22: 663–683

[24]

Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993

[25]

Taibleson M H, Weiss G. The molecular characterization of certain Hardy spaces. Astérisque, 1980, 77: 67–149

[26]

Wang F, Yang D, Yang S. Applications of Hardy spaces associated with ball quasi- Banach function spaces. Results Math, 2020, 75: Art 26 (58 pp)

[27]

Wang H, Liu H. The intrinsic square function characterizations of weighted Hardy spaces. Illinois J Math, 2012, 56: 367–381

[28]

Wang S, Yang D, Yuan W, Zhang Y. Weak Hardy-type spaces associated with ball quasi-Banach function spaces II: Littlewood–Paley characterizations and real interpolation. J Geom Anal, 2019,

[29]

Wilson M. The intrinsic square function. Rev Mat Iberoam, 2007, 23: 771–791

[30]

Wilson M. Weighted Littlewood–Paley Theory and Exponential-Square Integrability. Lecture Notes in Math, Vol 1924. Berlin: Springer, 2008

[31]

Wilson M. How fast and in what sense(s) does the Calderón reproducing formula converge? J Fourier Anal Appl, 2010, 16: 768–785

[32]

Wilson M. Convergence and stability of the Calderón reproducing formula in H1 and BMO.J Fourier Anal Appl, 2011, 17: 801–820

[33]

Yan X. Intrinsic square function characterizations of variable weak Hardy spaces. Taiwanese J Math, 2020, 24: 43–62

[34]

Yan X. Intrinsic square function characterizations of weak Musielak–Orlicz Hardy spaces. Banach J Math Anal, 2019, 13: 969–988

[35]

Yang D, Liang Y, Ky L D. Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Math, Vol 2182. Cham: Springer-Verlag, 2017

[36]

Zhang Y, Wang S, Yang D, Yuan W. Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: decompositions with applications to boundedness of Calderón–Zygmund operators. Sci China Math, 2020,

[37]

Zhang Y, Yang D, Yuan W, Wang S. Real-variable characterizations of Orlicz-slice Hardy spaces. Anal Appl (Singap), 2019, 17: 597–664

[38]

Zhuo C, Yang D, Liang Y. Intrinsic square function characterizations of Hardy spaces with variable exponents. Bull Malays Math Sci Soc, 2016, 39: 1541–1577

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (464KB)

811

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/