
Hardy space estimates for bi-parameter Littlewood-Paley square functions
Fanghui LIAO, Zhengyang LI
Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 333-349.
Hardy space estimates for bi-parameter Littlewood-Paley square functions
Suppose that g(f) are bi-parameter Littlewood-Paley square functions which were introduced by H. Martikainen. It is known that the boundedness and the boundedness of g(f) have been proved by H. Martikainen and by Z. Li and Q. Xue, respectively. In this paper, we apply the vector-valued theory, the atomic decomposition of product Hardy spaces, and Journe's covering lemma to show that g(f) are bounded from to with p smaller than 1.
Hardy space / Littlewood-Paley square function / Journe's covering lemma / atomic decomposition
[1] |
Chang S Y, Fefferman R. A continuous version of duality of H1 with BMO on bi-disc. Ann of Math, 1980, 112: 179–201
CrossRef
Google scholar
|
[2] |
Christ M, Journé J L. Polynomial growth estimates for multilinear singular integral operators. Acta Math, 1987, 159: 51–80
CrossRef
Google scholar
|
[3] |
Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193
CrossRef
Google scholar
|
[4] |
Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130
CrossRef
Google scholar
|
[5] |
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143
CrossRef
Google scholar
|
[6] |
Gundy R F, Stein E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029
CrossRef
Google scholar
|
[7] |
Han Y, Lee M Y, Lin C C, Lin Y C. Calderón-Zygmund operators on product Hardy spaces. J Funct Anal, 2010, 258: 2834–2861
CrossRef
Google scholar
|
[8] |
Han Y, Yang D. Hp boundedness of Calderon-Zygmund operators on product spaces. Math Z, 2005, 249: 869–881
CrossRef
Google scholar
|
[9] |
Hofmann S. A local Tb theorem for square functions. In: Mitrea D, Mitrea M, eds. Perspectives in Partial Differential Equations, Harmonic Analysis and Applications. Proc Sympos Pure Math, Vol 79. Providence: Amer Math Soc, 2000, 175–185
CrossRef
Google scholar
|
[10] |
Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91
CrossRef
Google scholar
|
[11] |
Li Z, Xue Q. Boundedness of bi-parameter Littlewood-Paley operators on product Hardy space. Rev Mat Complut, 2018, 31: 713–745
CrossRef
Google scholar
|
[12] |
Malliavia M P, Malliavia P. Intégrales de Lusin-Calderon por les fonctions biharmoniques. Bull Sci Math, 1977, 101: 357–384
|
[13] |
Martikainen H. Boundedness of a class of bi-parameter square functions in the upper half-spaces. J Funct Anal, 2014, 267: 3580–3597
CrossRef
Google scholar
|
[14] |
Semmes S. Square function estimates and the T(b) theorem. Proc Amer Math Soc, 1990, 110: 721–726
CrossRef
Google scholar
|
[15] |
Stein E M. On the functions of Littlewood-Paley: Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430–466
CrossRef
Google scholar
|
[16] |
Stein E M. Topics in Harmonic Analysis: Related to the Littlewood-Paley Theory. Ann of Math Stud. Princeton: Princeton Univ Press, 1970
CrossRef
Google scholar
|
/
〈 |
|
〉 |