Hardy space estimates for bi-parameter Littlewood-Paley square functions

Fanghui LIAO , Zhengyang LI

Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 333 -349.

PDF (320KB)
Front. Math. China ›› 2020, Vol. 15 ›› Issue (2) : 333 -349. DOI: 10.1007/s11464-020-0821-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Hardy space estimates for bi-parameter Littlewood-Paley square functions

Author information +
History +
PDF (320KB)

Abstract

Suppose that g(f) are bi-parameter Littlewood-Paley square functions which were introduced by H. Martikainen. It is known that the L2(n×m) boundedness and the H1(n×m)L1(n×m) boundedness of g(f) have been proved by H. Martikainen and by Z. Li and Q. Xue, respectively. In this paper, we apply the vector-valued theory, the atomic decomposition of product Hardy spaces, and Journe's covering lemma to show that g(f) are bounded from Hp(n×m) to Lp(n×m) with p smaller than 1.

Keywords

Hardy space / Littlewood-Paley square function / Journe's covering lemma / atomic decomposition

Cite this article

Download citation ▾
Fanghui LIAO, Zhengyang LI. Hardy space estimates for bi-parameter Littlewood-Paley square functions. Front. Math. China, 2020, 15(2): 333-349 DOI:10.1007/s11464-020-0821-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chang S Y, Fefferman R. A continuous version of duality of H1 with BMO on bi-disc. Ann of Math, 1980, 112: 179–201

[2]

Christ M, Journé J L. Polynomial growth estimates for multilinear singular integral operators. Acta Math, 1987, 159: 51–80

[3]

Fefferman C, Stein E M. Hp spaces of several variables. Acta Math, 1972, 129: 137–193

[4]

Fefferman R. Harmonic analysis on product spaces. Ann of Math, 1987, 126: 109–130

[5]

Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117–143

[6]

Gundy R F, Stein E M. Hp theory for the poly-disc. Proc Natl Acad Sci USA, 1979, 76: 1026–1029

[7]

Han Y, Lee M Y, Lin C C, Lin Y C. Calderón-Zygmund operators on product Hardy spaces. J Funct Anal, 2010, 258: 2834–2861

[8]

Han Y, Yang D. Hp boundedness of Calderon-Zygmund operators on product spaces. Math Z, 2005, 249: 869–881

[9]

Hofmann S. A local Tb theorem for square functions. In: Mitrea D, Mitrea M, eds. Perspectives in Partial Differential Equations, Harmonic Analysis and Applications. Proc Sympos Pure Math, Vol 79. Providence: Amer Math Soc, 2000, 175–185

[10]

Journé J L. Calderón-Zygmund operators on product spaces. Rev Mat Iberoam, 1985, 1: 55–91

[11]

Li Z, Xue Q. Boundedness of bi-parameter Littlewood-Paley operators on product Hardy space. Rev Mat Complut, 2018, 31: 713–745

[12]

Malliavia M P, Malliavia P. Intégrales de Lusin-Calderon por les fonctions biharmoniques. Bull Sci Math, 1977, 101: 357–384

[13]

Martikainen H. Boundedness of a class of bi-parameter square functions in the upper half-spaces. J Funct Anal, 2014, 267: 3580–3597

[14]

Semmes S. Square function estimates and the T(b) theorem. Proc Amer Math Soc, 1990, 110: 721–726

[15]

Stein E M. On the functions of Littlewood-Paley: Lusin, and Marcinkiewicz. Trans Amer Math Soc, 1958, 88: 430–466

[16]

Stein E M. Topics in Harmonic Analysis: Related to the Littlewood-Paley Theory. Ann of Math Stud. Princeton: Princeton Univ Press, 1970

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (320KB)

571

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/