PDF
(369KB)
Abstract
Extriangulated category was introduced by H. Nakaoka and Y. Palu to give a unification of properties in exact categories and triangulated categories. A notion of tilting (resp., cotilting) subcategories in an extriangulated category is defined in this paper. We give a Bazzoni characterization of tilting (resp., cotilting) subcategories and obtain an Auslander-Reiten correspondence between tilting (resp., cotilting) subcategories and coresolving covariantly (resp., resolving contravariantly) finite subcatgories which are closed under direct summands and satisfy some cogenerating (resp., generating) conditions. Applications of the results are given: we show that tilting (resp., cotilting) subcategories defined here unify many previous works about tilting modules(subcategories) in module categories of Artin algebras and in abelian categories admitting a cotorsion triples; we also show that the results work for the triangulated categories with a proper class of triangles introduced by A. Beligiannis.
Keywords
Extriangulated category
/
tilting subcategory
/
Auslander-Reiten correspondence
/
Bazzoni characterization
Cite this article
Download citation ▾
Bin ZHU, Xiao ZHUANG.
Tilting subcategories in extriangulated categories.
Front. Math. China, 2020, 15(1): 225-253 DOI:10.1007/s11464-020-0811-7
| [1] |
Angeleri Hügel L, Happel D, Krause H. Handbook of Tilting Theory. London Math Soc Lecture Note Ser, Vol 332. Cambridge: Cambridge Univ Press, 2007
|
| [2] |
Assem I, Simson D, Skowronski A. Elements of the Representation Theory of Associative Algebras. Vol 1: Techniques of Representation Theory. London Math Soc Stud Texts, Vol 65. Cambridge: Cambridge Univ Press, 2006
|
| [3] |
Auslander M. Coherent functors. In: Eilenberg S, Harrison D K, MacLane S, Röhrl H, eds. Proceedings of the Conference on Categorical Algebra. Berlin: Springer, 1965, 189–231
|
| [4] |
Auslander M, Buchweitz R O. The homological theory of maximal Cohen-Macaulay approximations. Mem Soc Math Fr, 1989, 38: 5–37
|
| [5] |
Auslander M, Platzeck M I, Reiten I. Coxeter functors without diagrams. Trans Amer Math Soc, 1979, 250: 1–46
|
| [6] |
Auslander M, Reiten I. Applications of contravariantly finite subcategories. Adv Math, 1991, 86(1): 111–152
|
| [7] |
Auslander M, Reiten I, Smalø S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, Vol 36. Cambridge: Cambridge Univ Press, 1997
|
| [8] |
Auslander M, Solberg O. Relative homology and representation theory II: Relative cotilting theory. Comm Algebra, 1993, 21(9): 3033–3079
|
| [9] |
Bazzoni S. A characterization of n-cotilting and n-tilting modules. J Algebra, 2004, 273(1): 359–372
|
| [10] |
Beligiannis A. Relative homological algebra and purity in triangulated categories. J Algebra, 2000, 227(1): 268–361
|
| [11] |
Bernstein I N, Gelfand I M, Ponomarev V A. Coxeter functors and Gabriel's theorem. Uspichi Mat Nauk, 1973, 28: 19–33 (in Russian); Russian Math Surveys, 1973, 28: 17–32
|
| [12] |
Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors. In: Dlab V, Gabriel P, eds. Representation Theory II. Lecture Notes in Math, Vol 832. Berlin: Springer, 1980, 103–169
|
| [13] |
Chen X W. Homotopy equivalences induced by balanced pairs. J Algebra, 2010, 324(10): 2718–2731
|
| [14] |
Colpi R, Fuller K. Tilting objects in abelian categories and quasitilted rings. Trans Amer Math Soc, 2007, 359(2): 741–765
|
| [15] |
Colpi R, Trlifaj J. Tilting modules and tilting torsion theories. J Algebra, 1995, 178(2): 614–634
|
| [16] |
Di Z, Wei J, Zhang X, Chen J. Tilting subcategories with respect to cotorsion triples in abelian categories. Proc Roy Soc Edinburgh Sect A, 2017, 147(4): 703–726
|
| [17] |
Dräxler P, Reiten I, Smalø S, Keller B. Exact categories and vector space categories. Trans Amer Math Soc, 1999, 351(2): 647–682
|
| [18] |
Enomoto H. Classifying exact categories via Wakamatsu tilting. J Algebra, 2017, 485: 1–44
|
| [19] |
Happel D. Triangulated Categories in the Representation of Finite Dimensional Algebras. London Math Soc Lecture Note Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988
|
| [20] |
Happel D, Ringel C M. Tilted algebras. Trans Amer Math Soc, 1982, 274(2): 399–443
|
| [21] |
Happel D, Unger L. On a partial order of tilting modules. Algebra Represent Theory, 2005, 8(2): 147–156
|
| [22] |
Hu J, Zhang D, Zhou P. Proper classes and Gorensteinness in extriangulated categories. arXiv: 1906.10989
|
| [23] |
Iyama O, Nakaoka H, Palu Y. Auslander-Reiten theory in extriangulated categories. arXiv: 1805.03776
|
| [24] |
Liu Y, Nakaoka H. Hearts of twin cotorsion pairs on extriangulated categories. J Algebra, 2019, 528: 96–149
|
| [25] |
Miyashita Y. Tilting modules of finite projective dimension. Math Z, 1986, 193(1): 113–146
|
| [26] |
Nakaoka H, Palu Y. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah Topol Géom Différ Catég, 2019, 60(2): 117–193
|
| [27] |
Rickard J. Morita theory for derived categories. J Lond Math Soc, 1989, 2(3): 436–456
|
| [28] |
Zhao T, Huang Z. Phantom ideals and cotorsion pairs in extriangulated categories. Taiwanese J Math, 2019, 23(1): 29{61
|
| [29] |
Zhou P, Zhu B. Triangulated quotient categories revisited. J Algebra, 2018, 502: 196–232
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature