Existence of periodic solutions for second-order Hamiltonian systems with asymptotically linear conditions

Xingfan CHEN , Fei GUO , Peng LIU

Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1313 -1323.

PDF (269KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1313 -1323. DOI: 10.1007/s11464-018-0736-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Existence of periodic solutions for second-order Hamiltonian systems with asymptotically linear conditions

Author information +
History +
PDF (269KB)

Abstract

We consider a class of asymptotically linear nonautonomous secondorder Hamiltonian systems. Using the Saddle Point Theorem, we obtain the existence result, which extends some previously known results.

Keywords

Existence / periodic solution / second-order Hamiltonian systems / Saddle Point Theorem

Cite this article

Download citation ▾
Xingfan CHEN, Fei GUO, Peng LIU. Existence of periodic solutions for second-order Hamiltonian systems with asymptotically linear conditions. Front. Math. China, 2018, 13(6): 1313-1323 DOI:10.1007/s11464-018-0736-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal, 1983, 7: 241–273

[2]

Cerami G. An existence criterion for critical points on unbounded mainfolds. Istit Lombardo Accad Sci Lett Rend A, 1978, 112: 332–336 (in Italian)

[3]

Chen X F, Guo F. Existence and multiplicity of periodic solutions for nonautonomous second order Hamiltonian systems. Bound Value Probl, 2016, 138: 1–10

[4]

Izydorek M, Janczewska J. Homoclinic solutions for a class of second-order Hamiltonian systems. J Differential Equations, 2005, 219: 375–389

[5]

Jiang Q, Tang C L. Periodic and subharmonic solutions of a class subquadratic second order Hamiltonian systems. J Math Anal Appl, 2007, 328: 380–389

[6]

Li L, Schechter M. Existence solutions for second order Hamiltonian systems. Nonlinear Anal, 2016, 27: 283–296

[7]

Long Y M. Nonlinear oscillations for classical Hamiltonian systems with bi-even subquadratic potentials. Nonlinear Anal, 1995, 24: 1665–1671

[8]

Long Y M. Index Theory for Symplectic Paths with Applications. Basel: Birkhaser, 2002

[9]

Luan S, Mao A. Periodic solutions for a class of non-autonomous Hamiltonian systems. Nonlinear Anal, 2005, 61: 1413–1426

[10]

Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. Berlin-New York: Springer-Verlag, 1989

[11]

Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg Conf Ser Math, No 65. Providence: Amer Math Soc, 1986

[12]

Tang C L. Existence and multiplicity of periodic solutions for nonautonomous second order systems. Nonlinear Anal, 1998, 32: 299–304

[13]

Tang C L, Wu X P. Periodic solutions of a class of new superquadratic second order Hamiltonian systems. Appl Math Lett, 2014, 34: 65–71

[14]

Tang X H, Jiang J C. Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian systems. Comput Math Appl, 2010, 59: 3646–3655

[15]

Tang X H, Xiao L. Homoclinic solutions for a class of second-order Hamiltonian systems. Nonlinear Anal, 2009, 71: 1140–1152

[16]

Tao Z L, Tang C L. Periodic and subharmonic solutions of second-order Hamiltonian systems. J Math Anal Appl, 2004, 293: 435–445

[17]

Tao Z L, Yan S A, Wu S L. Periodic solutions for a class of superquadratic Hamiltonian systems. J Math Anal Appl, 2007, 331: 152–158

[18]

Wang Z Y, Xiao J Z. On periodic solutions of subquadratic second order nonautonomous Hamiltonian systems. Appl Math Lett, 2015, 40: 71–72

[19]

Zhang Q Y, Liu C G. Infinitely many periodic solutions for second order Hamiltonian systems. J Differential Equations, 2011, 251: 816–833

[20]

Zhao F K, Chen J, Yang M B. A periodic solution for a second order asymptotically linear Hamiltonian systems. Nonlinear Anal, 2009, 70: 4021–4026

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (269KB)

806

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/