Acute perturbation of Drazin inverse and oblique projectors

Sanzheng QIAO, Yimin WEI

PDF(274 KB)
PDF(274 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (6) : 1427-1445. DOI: 10.1007/s11464-018-0731-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Acute perturbation of Drazin inverse and oblique projectors

Author information +
History +

Abstract

For an n×n complex matrix A with ind(A) = r; let AD and Aπ = I-AAD be respectively the Drazin inverse and the eigenprojection corresponding to the eigenvalue 0 of A: For an n×n complex singular matrix B with ind(B) =s; it is said to be a stable perturbation of A; if I(BπAπ)2 is nonsingular, equivalently, if the matrix B satisfies the condition R(Bs) R(Bs)N(Ar)={0} and N(Bs)R(Ar)={0}, introduced by Castro-Gonz

Keywords

Drazin inverse / acute perturbation / stable perturbation / spectral radius / spectral norm / oblique projection

Cite this article

Download citation ▾
Sanzheng QIAO, Yimin WEI. Acute perturbation of Drazin inverse and oblique projectors. Front. Math. China, 2018, 13(6): 1427‒1445 https://doi.org/10.1007/s11464-018-0731-y

References

[1]
Baksalary O, Trenkler G. Core inverse of matrices. Linear Multilinear Algebra, 2010, 58: 681–697
CrossRef Google scholar
[2]
Baksalary O, Trenkler G. On column and null spaces of functions of a pair of oblique projectors. Linear Multilinear Algebra, 2013, 61: 1116–1129
CrossRef Google scholar
[3]
Ben-Israel A, Greville T N E. Generalized Inverses Theory and Applications. 2nd ed. New York: Springer, 2003
[4]
Böttcher A, Spitkovsky I. A gentle guide to the basics of two projections theory. Linear Algebra Appl, 2010, 432: 1412–1459
CrossRef Google scholar
[5]
Campbell S, Meyer C. Generalized Inverses of Linear Transformations. Philadelphia: SIAM, 2009
CrossRef Google scholar
[6]
Castro González N, Koliha J, Straskraba I. Perturbation of the Drazin inverse. Soochow J Math, 2001, 27: 201–211
[7]
Castro González N, Koliha J, Wei Y. Perturbation of the Drazin inverse for matrices with equal eigenprojections at zero. Linear Algebra Appl, 2000, 312: 181–189
CrossRef Google scholar
[8]
Castro-González N, Martínez-Serrano M, Robles J. An extension of the perturbation analysis for the Drazin inverse. Electron J Linear Algebra, 2011, 22: 539–556
CrossRef Google scholar
[9]
Castro-González N, Robles J, Vélez-Cerrada J. Characterizations of a class of matrices and perturbation of the Drazin inverse. SIAM J Matrix Anal Appl, 2008, 30: 882–897
CrossRef Google scholar
[10]
Castro-González N, Vélez-Cerrada J. On the perturbation of the group generalized inverse for a class of bounded operators in Banach spaces. J Math Anal Appl, 2008, 341: 1213–1223
CrossRef Google scholar
[11]
Deng C, Du H. The reduced minimum modulus of Drazin inverses of linear operators on Hilbert spaces. Proc Amer Math Soc, 2006, 134: 3309–3317
CrossRef Google scholar
[12]
Eagambaram M, Manjunatha Prasad K, Mohana K. Column space decomposition and partial order on matrices. Electronic J Linear Algebra, 2013, 26: 795–815
CrossRef Google scholar
[13]
Galántai A. Projectors and Projection Methods. New York: Springer, 2004
CrossRef Google scholar
[14]
Groβ J, Trenkler G. On the product of oblique projectors. Linear Multilinear Algebra, 1998, 44: 247–259
CrossRef Google scholar
[15]
Hanke M. Iterative consistency: a concept for the solution of singular systems of linear equations. SIAM J Matrix Anal Appl, 1994, 15: 569–577
CrossRef Google scholar
[16]
Hartwig R, Wang G, Wei Y. Some additive results on Drazin inverse. Linear Algebra Appl, 2001, 322: 207–217
CrossRef Google scholar
[17]
Ipsen I, Meyer C. The angle between complementary subspaces. Amer Math Monthly, 1995, 102: 904–911
CrossRef Google scholar
[18]
Kato T. Perturbation Theory for Linear Operators. Berlin: Springer-Verlag Berlin, 1980
[19]
Kirkland S, Neumann M. Group Inverses of M-Matrices and their Applications. Boca Raton: CRC Press, 2012
[20]
Kirkland S, Neumann M, Sze N. On optimal condition numbers for Markov chains. Numer Math, 2008, 110: 521–537
CrossRef Google scholar
[21]
Koliha J. Error bounds for a general perturbation of the Drazin inverse. Appl Math Comput, 2002, 126: 181–185
CrossRef Google scholar
[22]
Koliha J, Rakovcevic V, Straskraba I. The difference and sum of projectors. Linear Algebra Appl, 2004, 388: 279–288
CrossRef Google scholar
[23]
Li X, Wei Y. An improvement on the perturbation of the group inverse and oblique projection. Linear Algebra Appl, 2001, 388: 53–66
CrossRef Google scholar
[24]
Li X, Wei Y. A note on the perturbation bound of the Drazin inverse. Appl Math Comput, 2003, 140: 329–340
CrossRef Google scholar
[25]
Liu X, Wang W, Wei Y. Continuity properties of the f1g-inverse and perturbation bounds for the Drazin inverse. Linear Algebra Appl, 2008, 429: 1026–1037
CrossRef Google scholar
[26]
Liu X, Wu S, Yu Y. The perturbation of the Drazin inverse. Int J Comput Math, 2012, 89: 711–726
CrossRef Google scholar
[27]
Malik S, Thome N. On a new generalized inverse for matrices of an arbitrary index. Appl Math Comput, 2014, 226: 575–580
CrossRef Google scholar
[28]
Meyer C. The role of the group generalized inverse in the theory of finite Markov chains. SIAM Review, 1975, 17: 443–464
CrossRef Google scholar
[29]
Meyer C. The condition of a finite Markov chain and perturbation bounds for the limiting probabilities. SIAM J on Algebraic and Discrete Methods, 1980, 1: 273–283
CrossRef Google scholar
[30]
Rice J. A theory of condition. SIAM J Numer Anal, 1966, 3: 287–310
CrossRef Google scholar
[31]
Rong G. The error bound of the perturbation of the Drazin inverse. Linear Algebra Appl, 1982, 47: 159–168
CrossRef Google scholar
[32]
Song C, Wei Y, Xu Q. A note on perturbation estimations for spectral projectors. Numer Funct Anal Optim, 2019 (to appear)
[33]
Stewart G. On the perturbation of pseudo-inverse, projections and linear least squares problems. SIAM Review, 1977, 19: 634–662
CrossRef Google scholar
[34]
Stewart G. On the numerical analysis of oblique projectors. SIAM J Matrix Anal Appl, 2011, 32: 309–348
CrossRef Google scholar
[35]
Sun J. On the sensitivity of the spectral projection. Linear Algebra Appl, 2005, 395: 83–94
CrossRef Google scholar
[36]
Szyld D. The many proofs of an identity on the norm of oblique projections. Numer Algorithms, 2006, 42: 309–323
CrossRef Google scholar
[37]
Vélez-Cerrada J, Robles J, Castro-González N. Error bounds for the perturbation of the Drazin inverse under some geometrical conditions. Appl Math Comput, 2009, 215: 2154–2161
CrossRef Google scholar
[38]
Wang G, Wei Y, Qiao S. Generalized Inverses: Theory and Computations. Developments in Mathematics, Vol 53. Singapore/Beijing: Springer/Science Press, 2018
CrossRef Google scholar
[39]
Wedin P. Perturbation theory for pseudo-inverses. BIT, 1973, 13: 217–232
CrossRef Google scholar
[40]
Wei Y. A characterization and representation of the Drazin inverse. SIAM J Matrix Anal Appl, 1996, 17: 744–747
CrossRef Google scholar
[41]
Wei Y. On the perturbation of the group inverse and oblique projection. Appl Math Comput, 1999, 98: 29–42
CrossRef Google scholar
[42]
Wei Y. The Drazin inverse of updating of a square matrix with application to perturbation formula. Appl Math Comput, 2000, 108: 77–83
CrossRef Google scholar
[43]
Wei Y. Perturbation bound of the Drazin inverse. Appl Math Comput, 2002, 125: 231–244
CrossRef Google scholar
[44]
Wei Y. Generalized inverses of matrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Boca Raton: CRC Press, 2014, Chapter 27
[45]
Wei Y. Acute perturbation of the group inverse. Linear Algebra Appl, 2017, 534: 135–157
CrossRef Google scholar
[46]
Wei Y, Deng C. A note on additive results for the Drazin inverse. Linear Multilinear Algebra, 2011, 59: 1319–1329
CrossRef Google scholar
[47]
Wei Y, Li X. An improvement on perturbation bounds for the Drazin inverse. Numer Linear Algebra Appl, 2003, 10: 563–575
CrossRef Google scholar
[48]
Wei Y, Li X, Bu F. A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces. SIAM J Matrix Anal Appl, 2005, 27: 72–81
CrossRef Google scholar
[49]
Wei Y, Li X, Bu F, Zhang F. Relative perturbation bounds for the eigenvalues of diagonalizable and singular matrices-application of perturbation theory for simple invariant subspaces. Linear Algebra Appl, 2006, 419: 765–771
CrossRef Google scholar
[50]
Wei Y,Wang G. The perturbation theory for the Drazin inverse and its application. Linear Algebra Appl, 1997, 258: 179–186
CrossRef Google scholar
[51]
Wei Y, Wu H. Convergence properties of Krylov subspace methods for singular linear systems with arbitrary index. J Comput Appl Math, 2000, 114: 305–318
CrossRef Google scholar
[52]
Wei Y, Wu H. The perturbation of the Drazin inverse and oblique projection. Appl Math Lett, 2000, 13: 77–83
CrossRef Google scholar
[53]
Wei Y, Wu H. Challenging problems on the perturbation of Drazin inverse. Ann Oper Res, 2001, 103: 371–378
CrossRef Google scholar
[54]
Xu Q, Song C, Wei Y. The stable perturbation of the Drazin inverse of the square matrices. SIAM J Matrix Anal Appl, 2010, 31: 1507-1520
CrossRef Google scholar
[55]
Xue Y, Chen G. Perturbation analysis for the Drazin inverse under stable perturbation in Banach space. Missouri J Math Sci, 2007, 19(2): Article 3 http://www.math-cs.ucmo.edu/~mjms/2007-2p.html

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(274 KB)

Accesses

Citations

Detail

Sections
Recommended

/