Existence of anti-periodic solutions for hemivariational inequalities

Xiaoyou LIU

Front. Math. China ›› 2018, Vol. 13 ›› Issue (3) : 607 -618.

PDF (154KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (3) : 607 -618. DOI: 10.1007/s11464-018-0699-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Existence of anti-periodic solutions for hemivariational inequalities

Author information +
History +
PDF (154KB)

Abstract

J. Y. Park and T. G. Ha [Nonlinear Anal., 2008, 68: 747–767; 2009, 71: 3203–3217] investigated the existence of anti-periodic solutions for hemivariational inequalities with a pseudomonotone operator. In this note, we point out that the methods used there are not suitable for the proof of the existence of anti-periodic solutions for hemivariational inequalities and we shall give a straightforward approach to handle these problems. The main tools in our study are the maximal monotone property of the derivative operator with antiperiodic conditions and the surjectivity result for L-pseudomonotone operators.

Keywords

Hemivariational inequality / anti-periodic solutions / maximal monotone operator

Cite this article

Download citation ▾
Xiaoyou LIU. Existence of anti-periodic solutions for hemivariational inequalities. Front. Math. China, 2018, 13(3): 607-618 DOI:10.1007/s11464-018-0699-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aubin J P, Cellina A. Differential Inclusions: Set-Valued Maps and Viability Theory.Berlin-New York-Tokyo: Springer-Verlag, 1984

[2]

Clarke F H. Optimization and Nonsmooth Analysis.Philadelphia: SIAM, 1990

[3]

Kulig A, Migórski S. Solvability and continuous dependence results for second order nonlinear evolution inclusions with a Volterra-type operator. Nonlinear Anal, 2012, 75(13): 4729–4746

[4]

Liu Z H. Anti-periodic solutions to nonlinear evolution equations. J Funct Anal, 2010, 258: 2026–2033

[5]

Liu Z H, Migórski S. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete Contin Dyn Syst Ser B, 2012, 9(1): 129–143

[6]

Migórski S. Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl Anal, 2005, 84(7): 669–699

[7]

Migórski S. Evolution hemivariational inequality for a class of dynamic viscoelastic nonmonotone frictional contact problems. Comput Math Appl, 2006, 52(5): 677–698

[8]

Migórski S, Ochal A. Quasi-static hemivariational inequality via vanishing acceleration approach. SIAM J Math Anal, 2009, 41: 1415–1435

[9]

Papageorgiou N S, Papalini F, Renzacci F. Existence of solutions and periodic solutions for nonlinear evolution inclusions. Rend Circ Mat Palermo, 1999, 48: 341–364

[10]

Papageorgiou N S, Yannakakis N. Second order nonlinear evolution inclusions I: Existence and relaxation results. Acta Math Sin (Engl Ser), 2005, 21(5): 977–996

[11]

Park J Y, Ha T G. Existence of antiperiodic solutions for hemivariational inequalities. Nonlinear Anal, 2008, 68: 747–767

[12]

Park J Y, Ha T G. Existence of anti-periodic solutions for quasilinear parabolic hemivariational inequalities. Nonlinear Anal, 2009, 71: 3203–3217

[13]

Zeidler E. Nonlinear Functional Analysis and Its Applications, II/A.New York: Springer, 1990

[14]

Zeidler E. Nonlinear Functional Analysis and Its Applications, II/B.New York: Springer, 1990

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (154KB)

775

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/