Commutator of Riesz potential in p-adic generalized Morrey spaces

Huixia MO, Xiaojuan WANG, Ruiqing MA

Front. Math. China ›› 2018, Vol. 13 ›› Issue (3) : 633-645.

PDF(166 KB)
PDF(166 KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (3) : 633-645. DOI: 10.1007/s11464-018-0696-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Commutator of Riesz potential in p-adic generalized Morrey spaces

Author information +
History +

Abstract

Suppose that Ipα is the p-adic Riesz potential. In this paper, we established the boundedness of Ipα on the p-adic generalized Morrey spaces, as well as the boundedness of the commutators generated by the p-adic Riesz potential Ipα and p-adic generalized Campanato functions.

Keywords

p-Adic field / p-adic Riesz potential / commutator / p-adic generalized Morrey function / p-adic generalized Campanato function

Cite this article

Download citation ▾
Huixia MO, Xiaojuan WANG, Ruiqing MA. Commutator of Riesz potential in p-adic generalized Morrey spaces. Front. Math. China, 2018, 13(3): 633‒645 https://doi.org/10.1007/s11464-018-0696-x

References

[1]
Campanato S. Proprietà di Hölderianità di alcune classi di funzioni. Ann Scuola Norm Sup Pisa, 1963, 17(1-2): 175–188
[2]
Chuong N M. Harmonic, Wavelet and p-Adic Analysis. Singapore: World Scientific, 2007
CrossRef Google scholar
[3]
Haran S. Riesz potentials and explicit sums in arithmetic. Invent Math, 1990, 101(1): 697–703
CrossRef Google scholar
[4]
Haran S. Analytic potential theory over the p-adics. Ann Inst Fourier, 1993, 43(4): 905–944
CrossRef Google scholar
[5]
Kim Y C. A simple proof of the p-adic version of the Sobolev embedding theorem. Commun Korean Math Soc, 2010, 25(1): 27–36
CrossRef Google scholar
[6]
Morrey C. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43(1): 126–166
CrossRef Google scholar
[7]
Nakai E. Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math Nachr, 1994, 166(1): 95–103
CrossRef Google scholar
[8]
Peetre J. On the theory of Lp,λspaces. J Funct Anal, 1969, 4(1): 71–87
CrossRef Google scholar
[9]
Robert A M. A Course in p-Adic Analysis. Berlin: Springer Science & Business Media, 2013
[10]
Schikhof W H. Ultrametric Calculus: An Introduction to p-adic Analysis. Cambridge: Cambridge Univ Press, 2007
[11]
Taibleson M H. Fourier Analysis on Local Fields. Princeton: Princeton Univ Press, 2015
[12]
Vladimirov V S, Volovich I V, Zelenov E I. p-Adic Analysis and Mathematical Physics. Singapore: World Scientific, 1994
[13]
Volosivets S S. Generalized fractional integrals in p-adic Morrey and Herz spaces. p-Adic Numbers Ultrametric Anal Appl, 2017, 9(1): 53–61
[14]
Wu Q Y, Fu Z W. Hardy-Littlewood-Sobolev inequalities on p-adic central Morrey spaces. J Funct Spaces Appl, 2015, 2015: 419532
[15]
Wu Q Y, Fu Z W. Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces. Bull Malays Math Sci Soc, 2017, 40(2): 635–654
CrossRef Google scholar
[16]
Wu Q Y, Mi L, Fu Z W. Boundedness of p-adic Hardy operators and their commutators on p-adic central Morrey and BMO spaces. J Funct Spaces Appl, 2013, 2013: 359193

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(166 KB)

Accesses

Citations

Detail

Sections
Recommended

/