Riccati equations and Toeplitz-Berezin type symbols on Dirichlet space of unit ball
Jianjun CHEN, Xiaofeng WANG, Jin XIA, Guangfu CAO
Riccati equations and Toeplitz-Berezin type symbols on Dirichlet space of unit ball
The present paper mainly gives some applications of Berezin type symbols on the Dirichlet space of unit ball. We study the solvability of some Riccati operator equations of the form XAX+ XB−CX= Drelated to harmonic Toeplitz operators on the Dirichlet space. Especially, the invariant subspaces of Toeplitz operators are also considered.
Riccati equation / Toeplitz operator / Dirichlet space / unit ball
[1] |
BergerC A, CoburnL A, ZhuK H. Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus. Amer J Math, 1988, 110(5): 921–953
CrossRef
Google scholar
|
[2] |
CaoG F. Toeplitz operators on Dirichlet spaces. Chinese J Contemp Math, 2000, 21(3): 283–298 (in Chinese)
|
[3] |
CaoG F, ZhuL T. The compactness of Toeplitz operators on Dirichlet spaces. Acta Math Sinica (Chin Ser), 2001, 44(2): 241–248 (in Chinese)
|
[4] |
GürdalM, SöhretF. Some results for Toeplitz operators on the Bergman space. Appl Math Comput, 2011, 218(3): 789–793
CrossRef
Google scholar
|
[5] |
KaraevM T. On the Riccati equations. Monatsh Math, 2008, 155(2): 161–166
CrossRef
Google scholar
|
[6] |
KaraevM T, GürdalM. On the Berezin symbols and Toeplitz operators. Extracta Math, 2010, 25(1): 83–102
|
[7] |
LiS X, HuJ Y. Compact operators on Bergman spaces of the unit ball. Acta Math Sinica(Chin Ser), 2004, 47(5): 837–844 (in Chinese)
|
[8] |
LuY F, SunS H. Toeplitz operators on Dirichlet spaces. Acta Math Sin (Engl Ser), 2001, 17(4): 643–648
CrossRef
Google scholar
|
[9] |
NordgrenE, RosenthalP. Boundary values of Berezin symbols. Oper Theory Adv Appl, 1994, 73: 362–368
CrossRef
Google scholar
|
[10] |
WangX F, XiaJ, CaoG F. Some properties of Toeplitz operators on Dirichlet space with respect to Berezin type transform. Sci Sin (Math), 2012, 42(11): 1159–1170
CrossRef
Google scholar
|
[11] |
XiaJ, WangX F, CaoG F. Compact operators on Dirichlet space. Acta Math Sci Ser A Chin Ed, 2009, 29: 1196–1205 (in Chinese)
|
/
〈 | 〉 |