Uniform nonintegrability of random variables

Zechun HU , Xue PENG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 41 -53.

PDF (148KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 41 -53. DOI: 10.1007/s11464-017-0623-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Uniform nonintegrability of random variables

Author information +
History +
PDF (148KB)

Abstract

Recently, T. K. Chandra, T. -C. Hu and A. Rosalsky [Statist. Probab. Lett., 2016, 116: 27–37] introduced the notion of a sequence of random variables being uniformly nonintegrable, and presented a list of interesting results on this uniform nonintegrability. We introduce a weaker definition on uniform nonintegrability (W-UNI) of random variables, present a necessary and sufficient condition for W-UNI, and give two equivalent characterizations of WUNI, one of which is a W-UNI analogue of the celebrated de La Vallée Poussin criterion for uniform integrability. In addition, we give some remarks, one of which gives a negative answer to the open problem raised by Chandra et al.

Keywords

Nonintegrable random variables / uniformly nonintegrable random variables

Cite this article

Download citation ▾
Zechun HU, Xue PENG. Uniform nonintegrability of random variables. Front. Math. China, 2018, 13(1): 41-53 DOI:10.1007/s11464-017-0623-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chandra T K. De La Vallée Poussin’s theorem, uniform integrability, tightness and moments. Statist Probab Lett, 2015, 107: 136–141

[2]

Chandra T K, Hu T-C, Rosalsky A. On uniform nonintegrability for a sequence of random variables. Statist Probab Lett, 2016, 116: 27–37

[3]

Chong K M. On a theorem concerning uniform integrability. Publ Inst Math (Beograd) (NS), 1979, 25(39): 8–10

[4]

Chow Y S, Teicher H. Probability Theory: Independence, Interchangeability, Martingales.3rd ed. New York: Springer-Verlag, 1997

[5]

Chung K L. A Course in Probability Theory.2nd ed. New York: Academic Press, 1974

[6]

Hu T-C, Rosalsky A. A note on the de La Vallée Poussin criterion for uniform integrability. Statist Probab Lett, 2011, 81: 169–174

[7]

Hu T-C, Rosalsky A. A note on random variables with an infinite absolute first moment. Statist Probab Lett, 2015, 97: 212–215

[8]

Klenke A. Probability Theory: A Comprehensive Course.2nd ed. London: Springer-Verlag, 2014

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (148KB)

893

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/