Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies

Jinhao LIANG , Po-Jen KUNG

Front. Math. China ›› 2017, Vol. 12 ›› Issue (3) : 607 -639.

PDF (407KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (3) : 607 -639. DOI: 10.1007/s11464-017-0619-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies

Author information +
History +
PDF (407KB)

Abstract

We prove uniform positivity of the Lyapunov exponent for quasiperiodic Schrödinger cocycles with C2 cos-type potentials, large coupling constants, and fixed weak Liouville frequencies.

Keywords

Lyapunov exponent / C2 cos-type potential / weak Liouville frequency

Cite this article

Download citation ▾
Jinhao LIANG, Po-Jen KUNG. Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies. Front. Math. China, 2017, 12(3): 607-639 DOI:10.1007/s11464-017-0619-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AvialA, DamanikD. Generic singular spectrum for ergodic Schrödinger operators.Duke Math J, 2005, 130: 393–400

[2]

BenedicksM, CarlesonL. The dynamics of the Hénon map.Ann of Math, 1991, 133: 73–169

[3]

BjerklövK. The dynamics of a class of quasi-periodic Schrödinger cocycles.Ann Henri Poincaré, 2015, 16(4): 961–1031

[4]

BourgainJ. Positivity and continuity of the Lyapunov exponent for shifts on Td with arbitrary frequency vector and real analytic potential.J Anal Math, 2005, 96: 313–355

[5]

BourgainJ, GoldsteinM. On nonperturbative localization with quasi-periodic potential.Ann of Math, 2000, 152: 835–879

[6]

ChanJ. Method of variations of potential of quasi-periodic Schrödinger equations.Geom Funct Anal, 2008, 17: 1416–1478

[7]

EliassonL H. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum.Acta Math, 1997, 179(2): 153–196

[8]

FröhlichJ, SpencerT, WittwerP. Localization for a class of one-dimensional quasiperiodic Schrödinger operators.Comm Math Phys, 1990, 132: 5–25

[9]

GoldsteinM, SchlagW. Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions.Ann of Math, 2001, 154: 155—203

[10]

HermanM. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2.Comment Math Helv, 1983, 58: 453–502

[11]

JitomirskayaS, KachkovskiyI. All couplings localization for quasiperiodic operators with Lipchitz monotone potentials.Preprint, 2015

[12]

KleinS. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function.J Funct Anal, 2005, 218: 255–292

[13]

SinaiYa G. Anderson localization for one-dimensional dierence Schrödinger operator with quasiperiodic potential.J Stat Phys, 1987, 46: 861–909

[14]

WangY, YouJ. Examples of dicontinuity of Lyapunov exponent in smooth quasiperiodic cocycles.Duke Math J, 2013, 162: 2363–2412

[15]

WangY, ZhangZ. Uniform positivity and continuity of Lyapunov exponents for a class of C2 quasi-periodic Schrödinger cocycles.J Funct Anal, 2015, 268: 2525–2585

[16]

YoungL S. Lyapunov exponents for some quasi-periodic cocycles.Ergodic Theory Dynam Systems, 1997, 17(2): 483–504

[17]

ZhangZ. Positive Lyapunov exponents for quasiperiodic Szegö cocycles.Nonlinearity, 2012, 25: 1771–1797

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (407KB)

1029

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/