Constructions for key distribution patterns

Shangdi CHEN , Huihui WEI

Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 301 -323.

PDF (217KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 301 -323. DOI: 10.1007/s11464-016-0610-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Constructions for key distribution patterns

Author information +
History +
PDF (217KB)

Abstract

Key distribution patterns (KDPs) are finite incidence structures satisfying a certain property which makes them widely used in minimizing the key storage and ensuring the security of communication between users in a large network. We construct a new KDP using t-design and combine two ω-KDPs to give new (ω−1)-KDPs, which provide secure communication in a large network and minimize the amount of key storage.

Keywords

Key predistribution scheme (KPS) / key distribution pattern (KDP) / incidence structure / design / wireless sensor network (WSN)

Cite this article

Download citation ▾
Shangdi CHEN, Huihui WEI. Constructions for key distribution patterns. Front. Math. China, 2017, 12(2): 301-323 DOI:10.1007/s11464-016-0610-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blom R. An optimal class of symmetric key generation systems. In: Advances in Cryptology: Proceedings of Eurocrypt 84. Lecture Notes in Comput Sci Vol 209. 1985, 335–338

[2]

Blundo C, DeSantis A, Vaccaro U, Herzberg A, Kutten S, Yung M. Perfectly secure key distribution for dynamic conferences. In: Advances in Cryptology. Lecture Notes in Comput Sci, Vol 740. Berlin: Springer, 1993, 471–486

[3]

Camtepe S A, Yener B. Combinatorial design of key distribution mechanisms for wireless sensor networks. In: Proc of the 9th European Symp on Research in Computer Security. Berlin: Springer, 2004, 293–308

[4]

Chan H, Perrig A, Song D X. Random key pre-distribution schemes for sensor networks. In: Proc of 2003 IEEE Symp on Research in Security and Privacy. New York: ACM Press, 2003, 197–213

[5]

Dyer M, Fenner, Freize A, Thomason A. On key storage in secure networks. J Cryptology, 1995, 8: 189–200

[6]

Eschenauer L, Gligor V.A key management scheme for distributed sensor networks. In: Proceedings of 9th ACM Conference on Computer and Communication Security, 2002: 41–47

[7]

Jansen C J A. On the key storage requirements for secure terminals. Computer & Security, 1986, 5: 145–149

[8]

Lee J, Stinson D R. Deterministic key pre-distribution schemes for distributed sensor networks. In: Proc of the 11th Int Workshop on Selected Areas in Cryptography. Berlin: Springer, 2004, 294–307

[9]

Lee J, Stinson D R. On the construction of practical key predistribution schemes for distributed sensor networks using combinatorial designs. ACM T Inform Syst Se, 2008, 11: 1–35

[10]

Liu D, Ning P. Establishing pair-wise keys in distributed sensor networks. In: Proc of the 10th ACM Conf on Computer and Communications Security. New York: ACM Press, 2003, 41–77

[11]

Mitchell C J, Piper F C. Key storage in secure networks. Discrete Appl Math, 1988, 21: 215–228

[12]

Novak J C. Generalized key distribution patterns. Doctoral Thesis. Univ of London, 2012

[13]

O’Keefe C M. Key distribution patterns using Minkowski planes. Des Codes Cryptogr, 1995, 5: 261–267

[14]

Quinn K A S. Some constructions for key distribution patterns. Des Codes Cryptogr, 1994, 4: 177–191

[15]

Quinn K A S. Bounds for key distribution patterns. J Cryptology, 1999, 12: 227–240

[16]

Rinaldi G. Key distribution patterns using tangent circle structures. Des Codes Cryptogr, 2004, 31: 289–300

[17]

Ruszink’o M. On the upper bound of the size of the r-cover-free families. J Combin Theory Ser A, 1994, 66: 302–310

[18]

Shin S H, Bate J C. Generalization of key distribution patterns for every n-pair of users. J Appl Math Informatics, 2008, 26: 563–572

[19]

Stinson D R. Combinatorial designs and cryptography. In: Survey in Combinatorics. Cambridge: Cambridge Univ Press, 1993, 257–287

[20]

Stinson D R. On some methods for unconditionally secure key distribution patterns and broadcast encryption. Des Codes Cryptogr, 1997, 12: 215–243

[21]

Stinson D R, Tran van Trung. Some new results on key distribution patterns and broadcast encryption. Des Codes Cryptogr, 1998, 14: 261–279

[22]

Stinson D R,Wei R. Generalised cover free families. Discrete Math, 2004, 279: 463–477

[23]

Stinson D R, Wei R, Zhu L. Some new bounds for cover free families. J Combin Theory Ser A, 2000, 90: 224–234

[24]

Wan Z X. Designs Theory.Beijing: Higher Education Press, 2009

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (217KB)

617

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/