On an open problem of Guo-Skiba

Zhenfeng WU , Wenbin GUO , Baojun LI

Front. Math. China ›› 2016, Vol. 11 ›› Issue (6) : 1603 -1612.

PDF (137KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (6) : 1603 -1612. DOI: 10.1007/s11464-016-0572-5
RESEARCH ARTICLE
RESEARCH ARTICLE

On an open problem of Guo-Skiba

Author information +
History +
PDF (137KB)

Abstract

Let G be a finite group, and let A be a proper subgroup of G. Then any chief factor H/AG of G is called a G-boundary factor of A. For any Gboundary factor H/AG of A, the subgroup (A ∩ H)/AG of G/AG is called a G-trace of A. In this paper, we prove that G is p-soluble if and only if every maximal chain of G of length 2 contains a proper subgroup M of G such that either some G-trace of M is subnormal or every G-boundary factor of M is a pʹ-group. This result give a positive answer to a recent open problem of Guo and Skiba. We also give some new characterizations of p-hypercyclically embedded subgroups.

Keywords

Finite group / p-hypercyclically embedded subgroup / G-boundary factor / G-trace of subgroup / meet-irreducible subgroup

Cite this article

Download citation ▾
Zhenfeng WU, Wenbin GUO, Baojun LI. On an open problem of Guo-Skiba. Front. Math. China, 2016, 11(6): 1603-1612 DOI:10.1007/s11464-016-0572-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ballester-Bolinches A, Ezquerro L M, Skiba A N. Local embeddings of some families of subgroups of finite groups. Acta Math Sin (Engl Ser), 2009, 25: 869–882

[2]

Chen X, Guo W, Skiba A N. Some conditions under which a finite group belongs a Baer local formation. Comm Algebra, 2014, 42: 4188–4205

[3]

Doerk K. Minimal nicht überauflösbare, endliche Gruppen. Math Z, 1966, 91: 198–205

[4]

Doerk K, Hawkes T. Finite Soluble Groups. Berlin-New York: Walter de Gruyter, 1992

[5]

Guo W. Structure Theory for Canonical Classes of Finite Groups. Berlin: Springer, 2015

[6]

Guo W, Kondrat’ev A S. Finite minimal non-supersolvable groups decomposable into the product of two normal supersolvable subgroups. Commun Math Stat, 2015, 3: 285–290

[7]

Guo W, Skiba A N. On some classes of finite quasi-F-groups. J Group Theory, 2009, 12: 407–417

[8]

Guo W, Skiba A N, Tang X. On boundary factors and traces of subgroups of finite groups. Commun Math Stat, 2014, 2: 349–361

[9]

Guo W, Skiba A N, Yang N. A generalized CAP-subgroup of a finite group. Sci China Math, 2015, 58: 2133–2144

[10]

Huppert B. Normalteiler und maximale Untergruppen endlicher Gruppen. Math Z, 1954, 60: 409–434

[11]

Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag, 1967

[12]

Kegel O. Sylow-Gruppen and Subnormalteiler endlicher Gruppen. Math Z, 1962, 78:205–221

[13]

Schmid P. Subgroups permutable with all Sylow subgroups. J Algebra, 1998, 82: 285–293

[14]

Schmidt R. Subgroup Lattices of Groups. Berlin: Walter de Gruyter, 1994

[15]

Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315:192–209

[16]

Skiba A N. On two questions of L. A. Shemetkov concerning hypercyclically embedded subgroups of finite groups. J Group Theory, 2010, 13: 841–850

[17]

Skiba A N. A characterization of the hypercyclically embedded subgroups of finite groups. J Pure Appl Algebra, 2011, 215: 257–261

[18]

Skiba A N. Cyclicity conditions for G-chief factors of normal subgroups of a group G.Sib Math J, 2011, 52: 127–130

[19]

Su N, Li Y, Wang Y. A criterion of p-hypercyclically embedded subgroups of finite groups. J Algebra, 2014, 400: 82–93

[20]

Weinstein M, ed. Between Nilpotent and Solvable. Passaic: Polygonal Publishing House, 1982

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (137KB)

744

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/