Classification of irreducible non-zero level quasifinite modules over twisted affine Nappi-Witten algebra

Xue CHEN

Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 269 -277.

PDF (108KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (2) : 269 -277. DOI: 10.1007/s11464-016-0531-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Classification of irreducible non-zero level quasifinite modules over twisted affine Nappi-Witten algebra

Author information +
History +
PDF (108KB)

Abstract

We obtain that every irreducible quasifinite module with non-zero level over the twisted affine Nappi-Witten algebra is either a highest weight module or a lowest one.

Keywords

Twisted affine Nappi-Witten algebra / quasifinite module / weight module

Cite this article

Download citation ▾
Xue CHEN. Classification of irreducible non-zero level quasifinite modules over twisted affine Nappi-Witten algebra. Front. Math. China, 2016, 11(2): 269-277 DOI:10.1007/s11464-016-0531-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bao Yixin, Jiang Cuipo, Pei Yufeng. Representations of affine Nappi-Witten algebras. J Algebra, 2011, 342: 111–133

[2]

Chen X, Jiang C, Jiang Q. Representations of the twisted affine Nappi-Witten algebras. J Math Phys, 2013, 54(5): 051703-1–20

[3]

Cheung Y, Freidel L, Savvidy K. Strings in gravimagnetic fields. J High Energy Phys, 2004, 054: 1–48

[4]

D’Appollonio G, Kiritsis E. String interactions in gravitational wave backgrounds. Nuclear Phys B, 2003, 674: 80–170

[5]

D’Appollonio G, Quella T. The abelian cosets of the Heisenberg group. J High Energy Phy, 2007, 045: 1–28

[6]

D’Appollonio G, Quella T. The diagonal cosets of the Heisenberg group. J High Energy Phys, 2008, 060: 1–42

[7]

Futorny M V. Irreducible non-dense A(1) 1-modules. Pacific J Math, 1996, 172: 83–99

[8]

Jiang Cuipo, Wang Song. Extension of vertex operator algebraVH^4 (l, 0). Algebra Colloq, 2014, 21(3): 361–380

[9]

Kac G V. Infinite Dimensional Lie Algebras. Cambridge: Cambridge University Press, 1990

[10]

Kiritsis E, Kounnas C. String propagation in gravitational wave backgrounds. Phys Lett B, 1994, 594: 368–374

[11]

Nappi C, Witten E.Wess-Zumino-Witten model based on a nonsemisimple group. Phys Rev Lett, 1993, 23: 3751–3753

[12]

Su Yucai. Classification of quasifinite modules over the Lie algebras of Weyl type. Adv Math, 2003, 174: 57–68

[13]

Witten E. Non-abelian bosonization in two-dimensions. Comm Math Phys, 1984, 92: 455–472

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (108KB)

684

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/