Lefschetz decomposition for de Rham cohomology on weakly Lefschetz symplectic manifolds

Qiang TAN , Haifeng XU

Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1169 -1178.

PDF (121KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1169 -1178. DOI: 10.1007/s11464-015-0483-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Lefschetz decomposition for de Rham cohomology on weakly Lefschetz symplectic manifolds

Author information +
History +
PDF (121KB)

Abstract

For a compact symplectic manifold which is s-Lefschetz which is weaker than the hard Lefschetz property, we prove that the Lefschetz decomposition for de Rham cohomology also holds.

Keywords

Symplectic manifold / s-Lefschetz / Lefschetz decomposition / s-ddΛ-lemma

Cite this article

Download citation ▾
Qiang TAN, Haifeng XU. Lefschetz decomposition for de Rham cohomology on weakly Lefschetz symplectic manifolds. Front. Math. China, 2015, 10(5): 1169-1178 DOI:10.1007/s11464-015-0483-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brylinski J-L. A differential complex for Poisson manifolds. J Differential Geom, 1988, 28: 93−114

[2]

Cavalcanti G R. New aspects of the ddc-lemma. Ph D Thesis, Oxford Univ, 2005, arXiv: math/0501406v1

[3]

Ehresmann C, Libermann P. Sur le problème déquivalence des formes différentielles extérieures quadratiques. C R Acad Sci Paris, 1949, 229: 697−698

[4]

Fernández M, Muñoz V, Ugarte L. The dδ-lemma for weakly Lefschetz symplectic manifolds. In: Differential Geometry and Its Applications. Prague: Matfyzpress, 2005, 229−246

[5]

Fernández M, Muñoz V, Ugarte L. Weakly Lefschetz symplectic manifolds. Trans Amer Math Soc, 2007, 359: 1851−1873

[6]

Gompf R. A new construction of symplectic manifolds. Ann Math, 1995, 142: 527−597

[7]

Griffiths P, Harris J. Principles of Algebraic Geometry. New York: John Wiley and Sons, 1978

[8]

Guillemin V. Symplectic Hodge theory and the dδ-lemma. Preprint, 2001

[9]

Guillemin V. Hodge theory. 1997

[10]

Lin Y. Currents, primitive cohomology classes and symplectic Hodge theory. 2011, arXiv: math/1112.2442v1

[11]

Lin Y, Sjamaar R. Equivariant symplectic Hodge theory and the dGδ-lemma. J Symplectic Geom, 2004, 2: 267−278

[12]

Mathieu O. Harmonic cohomology classes of symplectic manifolds. Comment Math Helv, 1995, 70: 1−9

[13]

Merkulov S A. Formality of canonical symplectic complexes and Frobenius manifolds. Int Math Res Not, 1998, 14: 727−733

[14]

Tseng L S, Yau S T. Cohomology and Hodge theory on symplectic manifolds: I. J Differential Geom, 2012, 91: 383−416

[15]

Yan D. Hodge structure on symplectic manifolds. Adv Math, 1996, 120: 143−154

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (121KB)

878

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/