Intrinsic contractivity properties of Feynman-Kac semigroups for symmetric jump processes with infinite range jumps

Xin CHEN , Jian WANG

Front. Math. China ›› 2015, Vol. 10 ›› Issue (4) : 753 -776.

PDF (224KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (4) : 753 -776. DOI: 10.1007/s11464-015-0477-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Intrinsic contractivity properties of Feynman-Kac semigroups for symmetric jump processes with infinite range jumps

Author information +
History +
PDF (224KB)

Abstract

Let (Xt)t≥0 be a symmetric strong Markov process generated by non-local regular Dirichlet form (D, D(D)) as follows:

D(f,g)=dd(f(x)-f(y))(g(x)-g(y))J(x,y)dxdy,f,gD(D),

where J(x, y) is a strictly positive and symmetric measurable function on d×d. We study the intrinsic hypercontractivity, intrinsic supercontractivity, and intrinsic ultracontractivity for the Feynman-Kac semigroup

TtV(f)(x)=Ex(exp(-0tV(Xs)ds)f(Xt)),xd,fL2(d;dx).

In particular, we prove that for J(x,y)|x-y|-d-al{|x-y|1}+e-|x-y|l{|x-y|>1} with α ∈(0, 2) and V(x)=|x|λ with λ>0, (TtV)t0 is intrinsically ultracontractive if and only if λ>1; and that for symmetric α-stable process (Xt)t≥0 with α ∈(0, 2) and V(x)=logλ(1+|x|) with some λ>0, (TtV)t0 is intrinsically ultracontractive (or intrinsically supercontractive) if and only if λ>1, and (TtV)t0 is intrinsically hypercontractive if and only if λ1. Besides, we also investigate intrinsic contractivity properties of (TtV)t0 for the case that lim inf|x|+V(x)<+

Keywords

Symmetric jump process / Lévy process / Dirichlet form / Feynman- Kac semigroup / intrinsic contractivity

Cite this article

Download citation ▾
Xin CHEN, Jian WANG. Intrinsic contractivity properties of Feynman-Kac semigroups for symmetric jump processes with infinite range jumps. Front. Math. China, 2015, 10(4): 753-776 DOI:10.1007/s11464-015-0477-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barlow M T, Bass R F, Chen Z-Q, Kassmann M. Non-local Dirichlet forms and symmetric jump processes. Trans Amer Math Soc, 2009, 361: 1963-1999

[2]

Bass R F, Kassmann M, Kumagai T. Symmetric jump processes: localization, heat kernels, and convergence. Ann Inst Henri Poincaré Probab Stat, 2010, 46: 59-71

[3]

Chen X, Wang J. Functional inequalities for nonlocal Dirichlet forms with finite range jumps or large jumps. Stochastic Process Appl, 2014, 124: 123-153

[4]

Chen X, Wang J. Intrinsic contractivity of Feyman-Kac semigroups for symmetric jump processes. arXiv: 1403.3486

[5]

Chen Z-Q, Kumagai T. Heat kernel estimates for stable-like processes on d-sets. Stochastic Process Appl, 2003, 108: 27-62

[6]

Chen Z-Q, Kumagai T. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab Theory Related Fields, 2008, 140: 277-317

[7]

Chen Z-Q, Kim P, Kumagai T. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math Ann, 2008, 342: 833-883

[8]

Chen Z-Q, Kim P, Kumagai T. Global heat kernel estimates for symmetric jump processes. Trans Amer Math Soc, 2011, 363: 5021-5055

[9]

Chen Z-Q, Kim P, Song R. Heat kernel estimates for Dirichlet fractional Laplacian. J Eur Math Soc, 2010, 12: 1307-1329

[10]

Chung K L, Zhao Z. From Brownian Motion to Schrödinger’s Equation. New York: Springer, 1995

[11]

Davies E B, Simon B. Ultracontractivity and heat kernels for Schrödinger operators and Dirichlet Laplacians. J Funct Anal, 1984, 59: 335-395

[12]

Kaleta K, Kulczycki T. Intrinsic ultracontractivity for Schrödinger operators based on fractional Laplacians. Potential Anal, 2010, 33: 313-339

[13]

Kaleta K, Lörinczi J. Pointwise eigenfunction estimates and intrinsic ultracontractivitytype properties of Feynman-Kac semigroups for a class of Lévy processes. Ann Probab (to appear), also see arXiv: 1209.4220

[14]

Kulczycki T, Siddeja B. Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes. Trans Amer Math Soc, 2006, 358: 5025-5057

[15]

Ouhabaz E M, Wang F-Y. Sharp estimates for intrinsic ultracontractivity on C1,α-domains. Manuscripta Math, 2007, 112: 229-244

[16]

Wang F-Y. Functional inequalities for empty spectrum estimates. J Funct Anal, 2000, 170: 219-245

[17]

Wang F-Y. Functional inequalities and spectrum estimates: the infinite measure case. J Funct Anal, 2002, 194: 288-310

[18]

Wang F-Y. Functional Inequalities, Markov Processes and Spectral Theory. Beijing: Science Press, 2005

[19]

Wang F-Y. Intrinsic ultracontractivity on Riemannian manifolds with infinite volume measures. Sci China Math, 2010, 53: 895-904

[20]

Wang F-Y, Wang J. Functional inequalities for stable-like Dirichlet forms. J Theoret Probab (to appear), also see arXiv: 1205.4508v3

[21]

Wang F-Y, Wu J-L. Compactness of Schrödinger semigroups with unbounded below potentials. Bull Sci Math, 2008, 132: 679-689

[22]

Wang J. Symmetric Lévy type operator. Acta Math Sin (Engl Ser), 2009, 25: 39-46

[23]

Wang J. A simple approach to functional inequalities for non-local Dirichlet forms. ESAIM Probab Stat, 2014, 18: 503-513

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (224KB)

962

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/