High order moment closure for Vlasov-Maxwell equations

Yana DI, Zhenzhong KOU, Ruo LI

Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1087-1100.

PDF(148 KB)
PDF(148 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1087-1100. DOI: 10.1007/s11464-015-0463-1
RESEARCH ARTICLE
RESEARCH ARTICLE

High order moment closure for Vlasov-Maxwell equations

Author information +
History +

Abstract

The extended magnetohydrodynamic models are derived based on the moment closure of the Vlasov-Maxwell (VM) equations. We adopt the Grad type moment expansion which was firstly proposed for the Boltzmann equation. A new regularization method for the Grad’s moment system was recently proposed to achieve the globally hyperbolicity so that the local well-posedness of the moment system is attained. For the VM equations, the moment expansion of the convection term is exactly the same as that in the Boltzmann equation, thus the new developed regularization applies. The moment expansion of the electromagnetic force term in the VM equations turns out to be a linear source term, which can preserve the conservative properties of the distribution function in the VM equations perfectly.

Keywords

Moment closure / Vlasov-Maxwell (VM) equations / Boltzmann equation / extended magnetohydrodynamics

Cite this article

Download citation ▾
Yana DI, Zhenzhong KOU, Ruo LI. High order moment closure for Vlasov-Maxwell equations. Front. Math. China, 2015, 10(5): 1087‒1100 https://doi.org/10.1007/s11464-015-0463-1

References

[1]
Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1964
[2]
Cai Z, Fan Y, Li R. Globally hyperbolic regularization of Grad’s moment system. Comm Pure Appl Math, 2014, 67(3): 464-518
CrossRef Google scholar
[3]
Cai Z, Li R. Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation. SIAM J Sci Comput, 2010, 32(5): 2875-2907
CrossRef Google scholar
[4]
Cai Z, Li R, Wang Y. Numerical regularized moment method for high Mach number flow. Commun Comput Phys, 2012, 11(5): 1415-1438
CrossRef Google scholar
[5]
Channell P J. Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys Fluids, 1976, 19: 1541-1544
CrossRef Google scholar
[6]
Grad H. On the kinetic theory of rarefied gases. Comm Pure Appl Math, 1949, 2(4): 331-407
CrossRef Google scholar
[7]
Grad H. The profile of a steady plane shock wave. Comm Pure Appl Math., 1952, 5(3): 257-300
CrossRef Google scholar
[8]
Jin S, Slemrod M. Regularization of the Burnett equations via relaxation. J Stat Phys, 2001, 103(5-6): 1009-1033
CrossRef Google scholar
[9]
Levermore C D. Moment closure hierarchies for kinetic theories. J Stat Phys, 1996, 83(5-6): 1021-1065
CrossRef Google scholar
[10]
Mangeney A, Califano F, Cavazzoni C, Travnicek P. A numerical scheme for the integration of the Vlasov-Maxwell system of equations. J Comput Phys, 2002, 179: 495-538
CrossRef Google scholar
[11]
Schmitz H, Grauer R. Kinetic Vlasov simulations of collisionless magnetic reconnection. Phys Plasmas, 2006, 13(9): 092309+
CrossRef Google scholar
[12]
Shan X, He X. Discretization of the velocity space in the solution of the Boltzmann equation. Phys Rev Lett, 1998, 80(1): 65-68
CrossRef Google scholar
[13]
Sircombe N J, Arber T D. A split-conservative scheme for the relativistic 2d Vlasov-Maxwell system. J Comput Phys, 2009, 228: 4773-4788
CrossRef Google scholar
[14]
Struchtrup H. Stable transport equations for rarefied gases at high orders in the Knudsen number. Phys Fluids, 2004, 16(11): 3921-3934
CrossRef Google scholar
[15]
Struchtrup H, Torrilhon M. Regularization of Grad’s 13 moment equations: Derivation and linear analysis. Phys Fluids, 2003, 15(9): 2668-2680
CrossRef Google scholar
[16]
Suzuki A, Shigeyama T. A conservative scheme for the relativistic Vlasov-Maxwell system. J Comput Phys, 2010, 229: 1643-1660
CrossRef Google scholar
[17]
Torrilhon M. Regularized 13-moment-equations. In: Ivanov M S, Rebrov A K, eds. Rarefied Gas Dynamics: 25th International Symposium. 2006
[18]
Umeda T, Miwa J, Matsumoto Y, Nakamura T K M, Togano K, Fukazawa K, Shinohara I. Full electromagnetic Vlasov code simulation of the Kelvin-Helmholtz instability. Phys Pla<?Pub Caret?>smas, 2010, 17(5): 052311+
CrossRef Google scholar
[19]
Verboncoeur J P. Particle simulation of plasmas: review and advances. Plasma Phys Control Fusion, 2005, 47: A231-A260
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(148 KB)

Accesses

Citations

Detail

Sections
Recommended

/