Representations and categorical realization of Hom-quasi-Hopf algebras

Yongsheng CHENG , Xiufu ZHANG

Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1263 -1281.

PDF (175KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (6) : 1263 -1281. DOI: 10.1007/s11464-015-0460-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Representations and categorical realization of Hom-quasi-Hopf algebras

Author information +
History +
PDF (175KB)

Abstract

We give a monoidal category approach to Hom-coassociative coalgebra by imposing the Hom-coassociative law up to some isomorphisms on the comultiplication map and requiring that these isomorphisms satisfy the copentagon axiom and obtain a Hom-coassociative 2-coalgebra, which is a 2- category. Second, we characterize Hom-bialgebras in terms of their categories of modules. Finally, we give a categorical realization of Hom-quasi-Hopf algebras using Hom-coassociative 2-coalgebra.

Keywords

Monoidal category / Hom-coassociative 2-coalgebra / Hom-quasi-Hopf algebra

Cite this article

Download citation ▾
Yongsheng CHENG, Xiufu ZHANG. Representations and categorical realization of Hom-quasi-Hopf algebras. Front. Math. China, 2015, 10(6): 1263-1281 DOI:10.1007/s11464-015-0460-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baez J, Dolan J. Higher-dimensional algebra and topological quantum field theory. J Math Phys, 1995, 36: 6073−6105

[2]

Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras. Comm Algebra, 2011, 39: 2216−2240

[3]

Chang W, Wang Z, Wu K, Yang Z. Categorification and quasi-Hopf algebras. Commun Theor Phys, 2011, 56: 207−210

[4]

Cheng Y, Su Y. (Co)Homology and universal central extension of Hom-Leibniz algebras. Acta Math Sin (Engl Ser), 2011, 27(5): 813−830

[5]

Cheng Y, Yang H. Low-dimensional cohomology of the q-deformed Heisenberg-Virasoro algebra of Hom-type. Front Math China, 2010, 5(4): 607−622

[6]

Crane L, Frenkel I. Four-dimensional topological quantum field theory, Hopf categories and the canonical bases. J Math Phys, 1994, 35: 5136−5154

[7]

Drinfeld V. Quasi-Hopf algebras. Leningrad Math J, 1990, 1: 1419−1457

[8]

Elhamdadi M, Makhlouf A. Hom-quasi-bialgebra. arXiv: 1209.0988v1

[9]

Etingof P, Nikshych D, Ostrik V. On fusion categories. Ann Math, 2005, 162(2): 581−642

[10]

Frenkel I, Khovanov M, Stroppel C. A categorification of finite-dimensional irreducible representations of quantum sl2 and their tensor products. Selecta Math (N S), 2006, 12: 379−431

[11]

Hartwig J, Larsson D, Silvestrov S. Deformations of Lie algebras using σ-derivations. J Algebra, 2006, 295: 314−361

[12]

Huang H, Liu G, Ye Y. Quivers, quasi-quantum groups and finite tensor categories. Comm Math Phys, 2011, 303: 595−612

[13]

Kassel C. Quantum Groups. Grad Texts in Math, Vol 155. New York: Springer-Verlag, 1995

[14]

Larsson D, Silvestrov S. Quasi-Hom-Lie algebras, central extensions and 2- cocycle-like identities. J Algebra, 2005, 288: 321−344

[15]

MacLane S. Categories for a Working Mathematician. 2nd ed. Grad Texts in Math, Vol 5. Berlin: Springer, 1998

[16]

Majid S. Cross product quantisation, nonabelian cohomology and twisting of Hopf algebras. In: Doebner H, Dobrev V, Ushveridze A, eds. Generalized Symmetries in Physics. Singapore: World Sci, 1994, 13−41

[17]

Makhlouf A, Silvestrov S. Hom-algebra and Hom-coalgebras. J Algebra Appl, 2010, 9(4): 553−589

[18]

Sheng Y. Representation of Hom-Lie algebra. Algebr Represent Theory, 2012, 15(6): 1081−1098

[19]

Yau D. Hom-algebras and homology. J Lie Theory, 2009, 19: 409−421

[20]

Yau D. Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular b<?Pub Caret?>ialgebras. J Phys A: Math Theory, 2009, 42: 165202

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (175KB)

868

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/