
Derived equivalences and Cohen-Macaulay Auslander algebras
Shengyong PAN, Xiaojin ZHANG
Front. Math. China ›› 2015, Vol. 10 ›› Issue (2) : 323-338.
Derived equivalences and Cohen-Macaulay Auslander algebras
Let A and B be Artin R-algebras of finite Cohen-Macaulay type. Then we prove that, if A and B are standard derived equivalent, then their Cohen-Macaulay Auslander algebras are also derived equivalent. And we show that Gorenstein projective conjecture is an invariant under standard derived equivalence between Artin R-algebras.
Standard derived equivalence / Cohen-Macaulay Auslander algebra / Gorenstein projective conjecture
[1] |
Auslander M, Bridger M. Stable Module Category. Mem Amer Math Soc, 94. Providence: Amer Math Soc, 1969
|
[2] |
Auslander M, Reiten I, Smalo S O. Representation Thoery of Artin Algebras. Cambridge: Cambridge University Press, 1995
CrossRef
Google scholar
|
[3] |
Beligiannis A. Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras. J Algebra, 2005, 288: 137−211
CrossRef
Google scholar
|
[4] |
Beligiannis A. On algebra of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973−2019
CrossRef
Google scholar
|
[5] |
Buchweitz R O. Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings. Preprint, 155pp (1987)
|
[6] |
Christensen L W, Holm H. Algebras that satisfy Auslander’s condition on vanishing of cohomology. Math Z, 2010, 265: 21−40
CrossRef
Google scholar
|
[7] |
Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. Cambridge University Press, Cambridge. 1988
CrossRef
Google scholar
|
[8] |
Happel D. On Gorenstein algebras. In: Representation Theory of Finite Groups and Finite Dimensional Algebras. (Proc Conf at Bielefeld, 1991), 389−404. Progress in Math, Vol 95. Basel: Birkhäuser, 1991
|
[9] |
Happel D. Homological Conjectures in Representation Theory of Finite Dimensional Algebras. Sherbrook Lecture Notes Series, 1991
|
[10] |
Hu W, Xi C. Derived equivalences and stable equivalences of Morita type, I. Nagoya Math J, 2010, 200: 107−152
|
[11] |
Jorgensen D A, Şega L M. Independence of the total reflexivity conditions for modules. Algebr Represent Theory, 2006, 9: 217−226
CrossRef
Google scholar
|
[12] |
Kato Y. On derived equivalent coherent rings. Comm Algebra, 2002, 30: 4437−4454
CrossRef
Google scholar
|
[13] |
Luo R, Huang Z. When are torsionless modules projective? J Algebra 2008, 320: 2156−2164
CrossRef
Google scholar
|
[14] |
Neeman A. Triangulated Categories. Ann of Math Stud, 148. Princeton: Princeton University Press, 2001
CrossRef
Google scholar
|
[15] |
Pan S. Derived equivalences for Cohen-Macaulay Auslander algebras. J Pure Appl Algebra, 2012, 216: 355−363
CrossRef
Google scholar
|
[16] |
Pan S. Generalized Auslander-Reiten conjecture and derived equivalences. Comm Algebra, 2013, 41: 3695−3704
CrossRef
Google scholar
|
[17] |
Pan S. Derived equivalences for Φ-Cohen-Macaulay Auslander−Yoneda algebras. Algebr Represent Theory, 2014, 17: 885−903
CrossRef
Google scholar
|
[18] |
Pan S, Xi C. Finiteness of finitistic dimension is invariant under derived equivalences. J Algebra, 2009, 322: 21−24
CrossRef
Google scholar
|
[19] |
Rickard J. Morita theory for derived categories. J Lond Math Soc, 1989, 39: 436−456
CrossRef
Google scholar
|
[20] |
Rickard J. Derived equivalences as derived functors. J Lond Math Soc, 1991, 43: 37−48
CrossRef
Google scholar
|
[21] |
Zhang X. A note on Gorenstein projective conjecture II. Preprint, 2012,
|
/
〈 |
|
〉 |