Derived equivalences and Cohen-Macaulay Auslander algebras

Shengyong PAN , Xiaojin ZHANG

Front. Math. China ›› 2015, Vol. 10 ›› Issue (2) : 323 -338.

PDF (168KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (2) : 323 -338. DOI: 10.1007/s11464-015-0437-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Derived equivalences and Cohen-Macaulay Auslander algebras

Author information +
History +
PDF (168KB)

Abstract

Let A and B be Artin R-algebras of finite Cohen-Macaulay type. Then we prove that, if A and B are standard derived equivalent, then their Cohen-Macaulay Auslander algebras are also derived equivalent. And we show that Gorenstein projective conjecture is an invariant under standard derived equivalence between Artin R-algebras.

Keywords

Standard derived equivalence / Cohen-Macaulay Auslander algebra / Gorenstein projective conjecture

Cite this article

Download citation ▾
Shengyong PAN, Xiaojin ZHANG. Derived equivalences and Cohen-Macaulay Auslander algebras. Front. Math. China, 2015, 10(2): 323-338 DOI:10.1007/s11464-015-0437-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auslander M, Bridger M. Stable Module Category. Mem Amer Math Soc, 94. Providence: Amer Math Soc, 1969

[2]

Auslander M, Reiten I, Smalo S O. Representation Thoery of Artin Algebras. Cambridge: Cambridge University Press, 1995

[3]

Beligiannis A. Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras. J Algebra, 2005, 288: 137−211

[4]

Beligiannis A. On algebra of finite Cohen-Macaulay type. Adv Math, 2011, 226: 1973−2019

[5]

Buchweitz R O. Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings. Preprint, 155pp (1987)

[6]

Christensen L W, Holm H. Algebras that satisfy Auslander’s condition on vanishing of cohomology. Math Z, 2010, 265: 21−40

[7]

Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. Cambridge University Press, Cambridge. 1988

[8]

Happel D. On Gorenstein algebras. In: Representation Theory of Finite Groups and Finite Dimensional Algebras. (Proc Conf at Bielefeld, 1991), 389−404. Progress in Math, Vol 95. Basel: Birkhäuser, 1991

[9]

Happel D. Homological Conjectures in Representation Theory of Finite Dimensional Algebras. Sherbrook Lecture Notes Series, 1991

[10]

Hu W, Xi C. Derived equivalences and stable equivalences of Morita type, I. Nagoya Math J, 2010, 200: 107−152

[11]

Jorgensen D A, Şega L M. Independence of the total reflexivity conditions for modules. Algebr Represent Theory, 2006, 9: 217−226

[12]

Kato Y. On derived equivalent coherent rings. Comm Algebra, 2002, 30: 4437−4454

[13]

Luo R, Huang Z. When are torsionless modules projective? J Algebra 2008, 320: 2156−2164

[14]

Neeman A. Triangulated Categories. Ann of Math Stud, 148. Princeton: Princeton University Press, 2001

[15]

Pan S. Derived equivalences for Cohen-Macaulay Auslander algebras. J Pure Appl Algebra, 2012, 216: 355−363

[16]

Pan S. Generalized Auslander-Reiten conjecture and derived equivalences. Comm Algebra, 2013, 41: 3695−3704

[17]

Pan S. Derived equivalences for Φ-Cohen-Macaulay Auslander−Yoneda algebras. Algebr Represent Theory, 2014, 17: 885−903

[18]

Pan S, Xi C. Finiteness of finitistic dimension is invariant under derived equivalences. J Algebra, 2009, 322: 21−24

[19]

Rickard J. Morita theory for derived categories. J Lond Math Soc, 1989, 39: 436−456

[20]

Rickard J. Derived equivalences as derived functors. J Lond Math Soc, 1991, 43: 37−48

[21]

Zhang X. A note on Gorenstein projective conjecture II. Preprint, 2012,

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (168KB)

865

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/