Quadratic forms connected with Fourier coefficients of Maass cusp forms

Liqun HU

Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1101-1112.

PDF(139 KB)
PDF(139 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (5) : 1101-1112. DOI: 10.1007/s11464-015-0416-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Quadratic forms connected with Fourier coefficients of Maass cusp forms

Author information +
History +

Abstract

For the normalized Fourier coefficients of Maass cusp forms λ(n) and the normalized Fourier coefficients of holomorphic cusp forms a(n), we give the bound of m12+m22+m32xλ(m12+m22+m32)Λ(m12+m22+m32) and m12+m22+m32xa(m12+m22+m32)Λ(m12+m22+m32).

Keywords

Circle method / Fourier coefficients of Maass cusp forms / quadratic form / exponential sum

Cite this article

Download citation ▾
Liqun HU. Quadratic forms connected with Fourier coefficients of Maass cusp forms. Front. Math. China, 2015, 10(5): 1101‒1112 https://doi.org/10.1007/s11464-015-0416-8

References

[1]
Chamizo F, Iwaniec H. On the sphere problem. Rev Mat Iberoam, 1995, 11: 417-429
CrossRef Google scholar
[2]
Chen J. Improvement of asymptotic formulas for the number of lattice points in a region of three dimensions (II). Sci Sin, 1963, 12: 751-764
[3]
Friedlander J B, Iwaniec H. Hyperbolic prime number theorem. Acta Math, 2009, 202: 1-19
CrossRef Google scholar
[4]
Guo Ruting, Zhai Wenguang. Some problem about the ternary quadratic form m12+m22+m32. Acta Arith, 2012, 156(2): 101-121
[5]
Heath-Brown D R. The Pjateckii-Shapiro prime number theorem. J Number Theory, 1983, 16: 242-266
CrossRef Google scholar
[6]
Heath-Brown D R. Lattice points in the sphere. In: Number Theory in Progress. Berlin: Walter de Gruyter, 1999, 883-892
CrossRef Google scholar
[7]
Hua L K. Introduction to Number Theory. Beijing: Science Press, 1957 (in Chinese)
[8]
Pan Chengdong, Pan Chengbiao. Goldbach Conjecture. Beijing: Science Press, 1981 (in Chinese)
[9]
Perelli A. On some exponential sums connected with Ramanujan’s τ -function. Mathem<?Pub Caret?>atika, 1984, 31(1): 150-158
CrossRef Google scholar
[10]
Vinogradov I M. On the number of integer points in a sphere. Izv Akad Nauk SSSR Ser Mat, 1963, 27: 957-968

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(139 KB)

Accesses

Citations

Detail

Sections
Recommended

/