Mixed eigenvalues of p-Laplacian

Mu-Fa CHEN , Lingdi WANG , Yuhui ZHANG

Front. Math. China ›› 2015, Vol. 10 ›› Issue (2) : 249 -274.

PDF (232KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (2) : 249 -274. DOI: 10.1007/s11464-015-0375-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Mixed eigenvalues of p-Laplacian

Author information +
History +
PDF (232KB)

Abstract

The mixed principal eigenvalue of p-Laplacian (equivalently, the optimal constant of weighted Hardy inequality in Lp space) is studied in this paper. Several variational formulas for the eigenvalue are presented. As applications of the formulas, a criterion for the positivity of the eigenvalue is obtained. Furthermore, an approximating procedure and some explicit estimates are presented case by case. An example is included to illustrate the power of the results of the paper.

Keywords

p-Laplacian / Hardy inequality in Lp space / mixed boundaries / explicit estimates / eigenvalue / approximating procedure

Cite this article

Download citation ▾
Mu-Fa CHEN, Lingdi WANG, Yuhui ZHANG. Mixed eigenvalues of p-Laplacian. Front. Math. China, 2015, 10(2): 249-274 DOI:10.1007/s11464-015-0375-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cañada A I, Drábek P, Fonda A. Handbook of Differential Equations: Ordinary Differential Equations, Vol 1. North Holland: Elsevier, 2004, 161-357

[2]

Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. New York: Springer, 2005

[3]

Chen M F. Speed of stability for birth-death process. Front Math China, 2010, 5(3): 379-516

[4]

Chen M F, Wang L D, Zhang Y H. Mixed principal eigenvalues in dimension one. Front Math China, 2013, 8(2): 317-343

[5]

Chen M F, Wang L D, Zhang Y H. Mixed eigenvalues of discrete p -Laplacian. Front Math China, 2014, 9(6): 1261-1292

[6]

Drábek P, Kufner A. Discreteness and simplicity of the spectrum of a quasilinear Strum-Liouville-type problem on an infinite interval. Proc Amer Math Soc, 2005, 134(1): 235-242

[7]

Jin H Y, Mao Y H. Estimation of the optimal constants in the Lp-Poincaré inequalities on the half line. Acta Math Sinica (Chin Ser), 2012, 55(1): 169-178 (in Chinese)

[8]

Kufner A, Maligranda L, Persson L. The prehistory of the Hardy inequality. Amer Math Monthly, 2006, 113(8): 715-732

[9]

Kufner A, Maligranda L, Persson L. The Hardy Inequality: About Its History and Some Related Results. Plzen: Vydavatelsky Servis Publishing House, 2007

[10]

Lane J, Edmunds D. Eigenvalues, Embeddings and Generalised Trigonometric Functions. Lecture Notes in Math, Vol 2016. Berlin: Springer, 2011

[11]

Opic B, Kufner A. Hardy Type Inequalities. Harlow: Longman Scientific and Technical, 1990

[12]

Pinasco J. Comparison of eignvalues for the p -Laplacian with integral inequalities. Appl Math Comput, 2006, 182: 1399-1404

[13]

Ważewski T. Sur un principe topologique del’examen de l’allure asymptotique des intégrales deséquations différentielles ordinaires. Ann Soc Polon Math, 1947, 20: 279-313

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (232KB)

955

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/