
A class of generalized odd Hamiltonian Lie superalgebras
Li REN, Qiang MU, Yongzheng ZHANG
Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1105-1129.
A class of generalized odd Hamiltonian Lie superalgebras
We study class of finite-dimensional Cantan-type Lie superalgebras HO(m) over a field of prime characteristic, which can be regarded as extensions of odd Hamiltonian superalgebra HO. And we also determine the derivation superalgebras of Lie superalgebras HO(m).
Derivation superalgebra / modular Lie superalgebra / Lie superalgebra of Cartan type
[1] |
Celousov M J. Derivations of Lie algebras of Cartan-type. Izv Vyssh Uchebn Zaved Mat, 1970, 98(7): 126-134 (in Russian)
|
[2] |
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebras. J Algebra, 1988, 118(1): 33-45
CrossRef
Google scholar
|
[3] |
Fu J Y, Zhang Q C, Jiang C P. The Cartan-type modular Lie superalgebra KO. Comm Algebra, 2006, 34(1): 107-128
CrossRef
Google scholar
|
[4] |
Grabowski J, Poncin N. Derivations of the Lie algebras of differential operators. Indag Math (NS), 2005, 16(2): 181-200
CrossRef
Google scholar
|
[5] |
Kac V G. Lie superalgebras. Adv Math, 1977, 26(1): 8-96
CrossRef
Google scholar
|
[6] |
Kac V G. Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv Math, 1998, 139(1): 1-55
CrossRef
Google scholar
|
[7] |
Liu W D, Zhang Y Z, Wang X L. The derivation algebra of the Cartan-type Lie superalgebra HO. J Algebra, 2004, 273(1): 176-205
CrossRef
Google scholar
|
[8] |
Liu W D, Zhang Y Z. Finite-dimensional odd Hamiltonian superalgebras over a field of prime characteristic. J Aust Math Soc, 2005, 79(1): 113-130
CrossRef
Google scholar
|
[9] |
Liu W D, Zhang Y Z. Automorphism groups of restricted Cartan-type Lie superalgebras. Comm Algebra, 2006, 34(10): 3767-3784
CrossRef
Google scholar
|
[10] |
Ma L L, Chen L Y, Zhang Y Z. Finite-dimensional simple modular Lie superalgebra M. Front Math China, 2013, 8(2): 411-441
CrossRef
Google scholar
|
[11] |
Petrogradski V M. Identities in the enveloping algebras for modular Lie superalgebras. J Algebra, 1992, 145(1): 1-21
CrossRef
Google scholar
|
[12] |
Scheunert M. The Theory of Lie Superalgebras. Lecture Notes in Math, Vol 716. Berlin-Heidelberg-New York: Springer-Verlag, 1979
|
[13] |
Shen G Y. New simple Lie algebras of characteristic p. Chinese Ann Math Ser B, 1983, 4(3): 329-346
|
[14] |
Strade H, Farnsteiner R. Modular Lie a<?Pub Caret?>lgebras and their representations. Monographs and Textbooks in Pure and Applied Math, 116. New York: Marecl Dekker, Inc, 1988
|
[15] |
Su Y C. Classification of finite-dimensional modules of the Lie superalgebras rmsl(2/1). Comm Algebra, 1992, 20(11): 3259-3278
CrossRef
Google scholar
|
[16] |
Wang Y, Zhang Y Z. Derivation algebra Der(H) and central extensions of Lie superalgebras. Comm Algebra, 2004, 32(10): 4117-4131
CrossRef
Google scholar
|
[17] |
Xu X N, Zhang Y Z, Chen L Y. The finite-dimensional modular Lie superalgebra Г. Algebra Colloq, 2010, 17(3): 525-540
CrossRef
Google scholar
|
[18] |
Zhang Q C, Zhang Y Z. Derivation algebras of modular Lie superalgebras W and S of Cartan-type. Acta Math Sci, 2000, 20(1): 137-144
|
[19] |
Zhang Y Z. Finite-dimensional Lie superalgebras of Cartan-type over field of prime characteristic. Chinese Sci Bull, 1997, 42(9): 720-724
CrossRef
Google scholar
|
[20] |
Zhang Y Z, Fu H C. Finite-dimensional Hamiltonian Lie superalgebra. Comm Algebra, 2002, 30(6): 2651-2673
CrossRef
Google scholar
|
[21] |
Zhang Y Z, Liu W D. Modular Lie Superalgebras. Beijing: Science Press, 2004 (in Chinese)
|
[22] |
Zhang Y Z, Zhang Q C. The finite-dimensional modular Lie superalgebra Ω. J Algebra, 2009, 321(12): 3601-3619
CrossRef
Google scholar
|
/
〈 |
|
〉 |