A class of generalized odd Hamiltonian Lie superalgebras

Li REN, Qiang MU, Yongzheng ZHANG

Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1105-1129.

PDF(203 KB)
PDF(203 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (5) : 1105-1129. DOI: 10.1007/s11464-014-0415-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A class of generalized odd Hamiltonian Lie superalgebras

Author information +
History +

Abstract

We study class of finite-dimensional Cantan-type Lie superalgebras HO(m) over a field of prime characteristic, which can be regarded as extensions of odd Hamiltonian superalgebra HO. And we also determine the derivation superalgebras of Lie superalgebras HO(m).

Keywords

Derivation superalgebra / modular Lie superalgebra / Lie superalgebra of Cartan type

Cite this article

Download citation ▾
Li REN, Qiang MU, Yongzheng ZHANG. A class of generalized odd Hamiltonian Lie superalgebras. Front. Math. China, 2014, 9(5): 1105‒1129 https://doi.org/10.1007/s11464-014-0415-1

References

[1]
Celousov M J. Derivations of Lie algebras of Cartan-type. Izv Vyssh Uchebn Zaved Mat, 1970, 98(7): 126-134 (in Russian)
[2]
Farnsteiner R. Derivations and central extensions of finitely generated graded Lie algebras. J Algebra, 1988, 118(1): 33-45
CrossRef Google scholar
[3]
Fu J Y, Zhang Q C, Jiang C P. The Cartan-type modular Lie superalgebra KO. Comm Algebra, 2006, 34(1): 107-128
CrossRef Google scholar
[4]
Grabowski J, Poncin N. Derivations of the Lie algebras of differential operators. Indag Math (NS), 2005, 16(2): 181-200
CrossRef Google scholar
[5]
Kac V G. Lie superalgebras. Adv Math, 1977, 26(1): 8-96
CrossRef Google scholar
[6]
Kac V G. Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv Math, 1998, 139(1): 1-55
CrossRef Google scholar
[7]
Liu W D, Zhang Y Z, Wang X L. The derivation algebra of the Cartan-type Lie superalgebra HO. J Algebra, 2004, 273(1): 176-205
CrossRef Google scholar
[8]
Liu W D, Zhang Y Z. Finite-dimensional odd Hamiltonian superalgebras over a field of prime characteristic. J Aust Math Soc, 2005, 79(1): 113-130
CrossRef Google scholar
[9]
Liu W D, Zhang Y Z. Automorphism groups of restricted Cartan-type Lie superalgebras. Comm Algebra, 2006, 34(10): 3767-3784
CrossRef Google scholar
[10]
Ma L L, Chen L Y, Zhang Y Z. Finite-dimensional simple modular Lie superalgebra M. Front Math China, 2013, 8(2): 411-441
CrossRef Google scholar
[11]
Petrogradski V M. Identities in the enveloping algebras for modular Lie superalgebras. J Algebra, 1992, 145(1): 1-21
CrossRef Google scholar
[12]
Scheunert M. The Theory of Lie Superalgebras. Lecture Notes in Math, Vol 716. Berlin-Heidelberg-New York: Springer-Verlag, 1979
[13]
Shen G Y. New simple Lie algebras of characteristic p. Chinese Ann Math Ser B, 1983, 4(3): 329-346
[14]
Strade H, Farnsteiner R. Modular Lie a<?Pub Caret?>lgebras and their representations. Monographs and Textbooks in Pure and Applied Math, 116. New York: Marecl Dekker, Inc, 1988
[15]
Su Y C. Classification of finite-dimensional modules of the Lie superalgebras rmsl(2/1). Comm Algebra, 1992, 20(11): 3259-3278
CrossRef Google scholar
[16]
Wang Y, Zhang Y Z. Derivation algebra Der(H) and central extensions of Lie superalgebras. Comm Algebra, 2004, 32(10): 4117-4131
CrossRef Google scholar
[17]
Xu X N, Zhang Y Z, Chen L Y. The finite-dimensional modular Lie superalgebra Г. Algebra Colloq, 2010, 17(3): 525-540
CrossRef Google scholar
[18]
Zhang Q C, Zhang Y Z. Derivation algebras of modular Lie superalgebras W and S of Cartan-type. Acta Math Sci, 2000, 20(1): 137-144
[19]
Zhang Y Z. Finite-dimensional Lie superalgebras of Cartan-type over field of prime characteristic. Chinese Sci Bull, 1997, 42(9): 720-724
CrossRef Google scholar
[20]
Zhang Y Z, Fu H C. Finite-dimensional Hamiltonian Lie superalgebra. Comm Algebra, 2002, 30(6): 2651-2673
CrossRef Google scholar
[21]
Zhang Y Z, Liu W D. Modular Lie Superalgebras. Beijing: Science Press, 2004 (in Chinese)
[22]
Zhang Y Z, Zhang Q C. The finite-dimensional modular Lie superalgebra Ω. J Algebra, 2009, 321(12): 3601-3619
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(203 KB)

Accesses

Citations

Detail

Sections
Recommended

/