Gerber-Shiu function of a discrete risk model with and without a constant dividend barrier

Shanshan WANG, Chuangji AN, Chunsheng ZHANG

PDF(142 KB)
PDF(142 KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (2) : 377-393. DOI: 10.1007/s11464-014-0409-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Gerber-Shiu function of a discrete risk model with and without a constant dividend barrier

Author information +
History +

Abstract

We consider the discrete risk model with exponential claim sizes. We derive the finite explicit elementary expression for the joint density function of three characteristics: the time of ruin, the surplus immediately before ruin, and the deficit at ruin. By using the explicit joint density function, we give a concise expression for the Gerber-Shiu function with no dividends. Finally, we obtain an integral equation for the Gerber-Shiu function under the barrier dividend strategy. The solution can be expressed as a combination of the Gerber-Shiu function without dividends and the solution of the corresponding homogeneous integral equation. This latter function is given clearly by means of the Gerber-Shiu function without dividends.

Keywords

Discrete risk model / Gerber-Shiu function / time of ruin / surplus before ruin / deficit at ruin / dividend

Cite this article

Download citation ▾
Shanshan WANG, Chuangji AN, Chunsheng ZHANG. Gerber-Shiu function of a discrete risk model with and without a constant dividend barrier. Front. Math. China, 2015, 10(2): 377‒393 https://doi.org/10.1007/s11464-014-0409-z

References

[1]
Chan W S, Zhang L Z. Direct derivation of finite-time ruin probabilities in the discrete risk model with exponential or geometric claims. N Am Actuar J, 2006, 10(4): 269-279
CrossRef Google scholar
[2]
Cheng S, Gerber H U, Shiu E S W. Discounted probabilities and ruin theory in the compound binomial model. Insurance Math Econom, 2000, 26(2): 239-250
CrossRef Google scholar
[3]
Claramunt M M, Marmol M, Alegre A. A note on the expected present value of dividends with a constant barrier in the discrete time model. Bull Swiss Assoc Actuaries, 2003, 2: 149-159
[4]
De Finetti B. Su un’impostazione alternative della teoria collettiva del rischio. Transactions of the XVth International congress of actuaries, 1957, 2: 433-443
[5]
Dickson D C M. Insurance Risk and Ruin. New York: Cambridge University Press, 2004
[6]
Dickson D C M, Water H R. Some optimal dividend problems. Astin Bull, 2004, 34(1): 49-74
CrossRef Google scholar
[7]
Gerber H U, Shiu E S W. On the time value of ruin. N Am Actuar J, 1998, 2(1): 48-78
CrossRef Google scholar
[8]
Gerber H U, Shiu E S W, Smith N. Methods for estimating the optimal dividend barrier and the probability of ruin. Insurance Math Econom, 2008, 42: 243-254
CrossRef Google scholar
[9]
Li S M. Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time risk model. Scand Actuar J, 2005, 105: 241-260
[10]
Li S M. On a class of discrete time renewal risk model. Scand Actuar J, 2005, 105: 271-284
[11]
Li S M, Lu Y, Garrido J. A review of discrete-time risk models. Rev R Acad Cien Esrie A Mat, 2009, 103(2): 321-337
[12]
Lin X S, Willmot G E, Drekic S. The classical risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function. Insurance Math Econom, 2003, 33: 551-566
CrossRef Google scholar
[13]
Pavlova K P, Willmot G E. The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function. Insurance Math Econom, 2004, 35: 267-277
CrossRef Google scholar
[14]
Tan J Y, Yang X Q. The compound binomial model with a constant dividend barrier and periodically paid dividends. J Syst Sci Complex, 2012, 5: 67-177

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(142 KB)

Accesses

Citations

Detail

Sections
Recommended

/