Nagata rings

Pascual JARA

Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 91 -110.

PDF (193KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 91 -110. DOI: 10.1007/s11464-014-0388-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Nagata rings

Author information +
History +
PDF (193KB)

Abstract

Let A be a commutative ring. For any set p of prime ideals of A, we define a new ring Na(A, p): the Nagata ring. This new ring has the particularity that we may transform certain properties relative to p to properties on the whole ring Na(A, p); some of these properties are: ascending chain condition, Krull dimension, Cohen-Macaulay, Gorenstein. Our main aim is to show that most of the above properties relative to a set of prime ideals p(i.e., local properties) determine and are determined by the same properties on the Nagata ring (i.e., global properties). In order to look for new applications, we show that this construction is functorial, and exhibits a functorial embedding from the localized category (A, p)-Mod into the module category Na(A, p)-Mod.

Keywords

Cohen–Macaulay / Gorenstein / Krull / Nagata rings

Cite this article

Download citation ▾
Pascual JARA. Nagata rings. Front. Math. China, 2015, 10(1): 91-110 DOI:10.1007/s11464-014-0388-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albu T, Nastasescu C. Relative Finiteness in Module Theory. New York: Marcel Dekker, 1984

[2]

Bueso J L, Jara P, Verschoren A. Duality, localization and completion. J Pure Appl Algebra, 1994, 94: 127-141

[3]

Bueso J L, Torrecillas B, Verschoren A. Local Cohomology and Localization. London: Pitman, 1991

[4]

Cahen J P. Commutative torsion theory. Trans Amer Math Soc, 1973, 184: 73-85

[5]

Call F W. Torsion theoretic algebraic geometry. Queen’s Papers in Pure and Applied Math, 82. Kingston: Queen’s University, 1989

[6]

Fontana M, Huckaba J, Papick I. Prüfer Domains. New York: Marcel Dekker, 1997

[7]

Fontana M, Jara P, Santos E. Prüfer *-multiplication domains and semistar operations. J Algebra Appl, 2003, 2(1): 21-50

[8]

Fontana M, Jara P, Santos E. Local-global properties for semistar operations. Comm Algebra, 2004, 32: 3111-3137

[9]

Fontana M, Loper A. An historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations. In: Multiplicative Ideal Theory in Commutative Algebra. New York: Springer, 2006, 169-187

[10]

Gilmer R. Multiplicative Ideal Theory. New York: Marcel Dekker, 1972

[11]

Golan J S. Torsion Theories. London: Pitman, 1986

[12]

Heinzer W, Ohm J. Locally noetherian commutative rings. Trans Amer Math Soc, 1971, 158: 273-284

[13]

Huckaba J A. Commutative Rings with Zero Divisors. New York: Marcel Dekker, 1988

[14]

Kaplansky I. Commutative Rings. Chicago: Chicago Univ Press, 1974

[15]

Nagata M. A treatise on the 14-th problem of Hilbert. Mem College Sci Univ Kyoto Ser A Math, 1956, 30: 57-70

[16]

Stenström B. Rings of Quotients. Berlin: Springer-Verlag, 1975

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (193KB)

959

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/