Uniqueness of weak solutions for fractional Navier-Stokes equations

Yong DING , Xiaochun SUN

Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 33 -51.

PDF (177KB)
Front. Math. China ›› 2015, Vol. 10 ›› Issue (1) : 33 -51. DOI: 10.1007/s11464-014-0370-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Uniqueness of weak solutions for fractional Navier-Stokes equations

Author information +
History +
PDF (177KB)

Abstract

We prove that if u is a weak solution of the d dimensional fractional Navier-Stokes equations for some initial data u0and if u belongs to path space p=Lq(0,T;Bp,r)or p=L1(0,T;B,r), then u is unique in the class of weak solutions when α>1. The main tools are Bony decomposition and Fourier localization technique. The results generalize and improve many recent known results.

Keywords

Strichartz estimateelliptic Navier-Stokes equationhigher-order elliptic operatorpotential

Cite this article

Download citation ▾
Yong DING, Xiaochun SUN. Uniqueness of weak solutions for fractional Navier-Stokes equations. Front. Math. China, 2015, 10(1): 33-51 DOI:10.1007/s11464-014-0370-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beirão da Veiga H. A new regularity class for the Navier-Stokes equations in ℝn. Chin Ann Math Ser B, 1995, 4: 407-412

[2]

Bony J M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann Sci École Norm Sup, 1981, 2(4): 209-246

[3]

Cannone M, Karch G. Incompressible Navier-Stokes equations in abstract Banach spaces. Sūrikaisekikenkyūsho Kōkyūroku, 2001, 1234: 27-41

[4]

Chemin J Y. Perfect Incompressible Fluids. New York: Oxford University Press, 19985.

[5]

Chen Q, Miao C, Zhang Z. On the uniqueness of weak solutions for the 3D Navier-Stokes equations. Ann Inst H Poincaré Anal Non Linéaire, 2009, 6: 2165-2180

[6]

Chen Q, Zhang Z. Space-time estimates in the Besov spaces and the Navier-Stokes equations. Methods Appl Anal, 2006, 1: 107-122

[7]

Cheskidov A, Shvydkoy R. On the regularity of weak solutions of the 3d Navier-Stokes equations in B∞,∞-1. arXiv: 0708.3067v2

[8]

Constantin P, Wu J. Behavior of solutions of 2D quasi-geostrophic equations. SIAM J Math Anal, 1999, 5: 937-948

[9]

Gallagher I, Planchon F. On global infinite energy solutions to the Navier-Stokes equations in two dimensions. Arch Ration Mech Anal, 2002, 4: 307-337

[10]

Germain P. Multipliers, paramultipliers, and weak-strong uniqueness for the Navier-Stokes equations. J Differential Equations, 2006, 2: 373-428

[11]

Giga Y. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J Differential Equations, 1986, 2: 186-212

[12]

Hajaiej H, Molinet L, Ozawa T, Wang B. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations. arXiv: 1004.4287

[13]

Iskauriaza L, Serëgin G, Shverak V. L3,∞-solutions of Navier-Stokes equations and backward uniqueness. Uspekhi Mat Nauk, 2003, 2: 3-44

[14]

Kozono H, Ogawa T, Taniuchi Y. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 2: 251-278

[15]

Kozono H, Shimada Y. Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations. Math Nachr, 2004, 276: 63-74

[16]

Kozono H, Sohr H. Remark on uniqueness of weak solutions to the Navier-Stokes equations. Analysis, 1996, 3: 255-271

[17]

Kozono H, Taniuchi Y. Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm Math Phys, 2000, 1: 191-200

[18]

Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach, 1969

[19]

Leray J. Sur le mouvement d’un liquids visqeux emplissant l’espace. Acta Math, 1934, 63: 193-248

[20]

Lions J L. Quelques résultats d’existence dans des équations aux dérivées partielles non linéaires. Bull Soc Math France, 1959, 87: 245-273

[21]

Lions J L. Sur certaines équations paraboliques non linéaires. Bull Soc Math France, 1965, 93: 155-175

[22]

Lions J L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod, Gauthier-Villars, 1969

[23]

Prodi G. Un teorema di unicità per le equazioni di Navier-Stokes. Ann Mat Pura Appl, 1959, 48(4): 173-182

[24]

Ribaud F. A remark on the uniqueness problem for the weak solutions of Navier-Stokes equations. Ann Fac Sci Toulouse Math, 2002, 2(6): 225-238

[25]

Serrin J. The Initial Value Problem for the Navier-Stokes Equations. Madison: Univ of Wisconsin Press, 1963, 69-98

[26]

Stein E. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press, 1970

[27]

Triebel H. Theory of Function Spaces. Monographs in Mathematics. Basel: Birkhäuser, 1983

[28]

Wu H, Fan J. Weak-strong uniqueness for the generalized Navier-Stokes equations. Appl Math Lett, 2012, 3: 423-428

[29]

Wu J. Generalized MHD equations. J Differential Equations, 2003, 2: 284-312

[30]

Wu J. The generalized incompressible Navier-Stokes equations in Besov spaces. Dyn Partial Diff Equ, 2004, 4: 381-400

[31]

Wu J. Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Comm Math Phys, 2006, 3: 803-831

[32]

Young J P. Fractional Gagliardo-Nirenberg inequality. J Chungcheong Math Soc, 2011, 24: 583-586

[33]

Zhou Y. A new regularity criterion for weak solutions to the Navier-Stokes equations. J Math Pures Appl, 2005, 11(9): 1496-1514

[34]

Zhou Y. Regularity criteria for the generalized viscous MHD equations. Ann Inst H Poincaré Anal Non Linéaire, 2007, 3: 491-505

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (177KB)

1130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/