Transcendence of some multivariate power series

Qiang WU, Ping ZHOU

Front. Math. China ›› 2014, Vol. 9 ›› Issue (2) : 425-430.

PDF(92 KB)
PDF(92 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (2) : 425-430. DOI: 10.1007/s11464-014-0363-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Transcendence of some multivariate power series

Author information +
History +

Abstract

We prove some transcendence results for the sums of some multivariate series of the form j1,j2,jm=0Cj1j2jm(r1j1r2j2rmjm)n for n = 1,2, where Cj1j2jm are some rational functions of j1+j2+jm.

Keywords

Transcendental number / multivariate power series

Cite this article

Download citation ▾
Qiang WU, Ping ZHOU. Transcendence of some multivariate power series. Front. Math. China, 2014, 9(2): 425‒430 https://doi.org/10.1007/s11464-014-0363-9

References

[1]
BakerA. Transcendental Number Theory. Cambridge: Cambridge University Press, 1975
CrossRef Google scholar
[2]
BundschuhP, ZhouP. Arithmetical results on certain multivariate power series. Bull Lond Math Soc, 2006, 38(2): 192-200
CrossRef Google scholar
[3]
ZhouP, CuytA, TanJ. General order multivariate Padé approximants for pseudomultivariate functions II. Math Comp, 2009, 78(268): 2137-2155
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(92 KB)

Accesses

Citations

Detail

Sections
Recommended

/