Characterization of compact quantum group

Ming LIU , Xia ZHANG

Front. Math. China ›› 2014, Vol. 9 ›› Issue (2) : 321 -328.

PDF (99KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (2) : 321 -328. DOI: 10.1007/s11464-014-0352-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Characterization of compact quantum group

Author information +
History +
PDF (99KB)

Abstract

Given a C*-algebra A and a comultiplication Φ on A, we show that the pair (A,Φ) is a compact quantum group if and only if the associated multiplier Hopf *-algebra (A,ΦA) is a compact Hopf *-algebra.

Keywords

Compact quantum group / associated multiplier Hopf *-algebra / compact Hopf *-algebra

Cite this article

Download citation ▾
Ming LIU, Xia ZHANG. Characterization of compact quantum group. Front. Math. China, 2014, 9(2): 321-328 DOI:10.1007/s11464-014-0352-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbeE. Hopf Algebras. Cambridge: Cambridge University Press, 1977

[2]

GuoM Z, JiangL N, QianM. A pairing theorem between multi-parameter bialgebra and its dual bialgebra. Sci China Ser A, 2001, 44(7): 867-876

[3]

GuoM Z, JiangL N, ZhaoY W. A pairing theorem between braided bialgebra and its dual bialgebra. J Algebra, 2001, 245(2): 532-551

[4]

HofmannK H, MorrisS A. The Structure of Compact Groups. Berlin: Walter de Gruyter, 2006

[5]

JiangL N, GuoM Z, QianM. The duality theory of a finite dimensional discrete quantum group. Proc Amer Math Soc, 2004, 132(12): 3537-3547

[6]

JiangL N, LiZ Y. Representation and duality of finite Hopf C*-algebra. Acta Math Sinica (Chin Ser), 2004, 47(6): 1155-1160(in Chinese)

[7]

JiangL N, WangL G. C*-structure of quantum double for finite Hopf C*-algebra. J Beijing Inst Technol, 2005, 14(3): 328-331

[8]

KuroseH, NakagamiY. Compact Hopf *-algebras, quantum enveloping algebras and dualWoronowicz algebras for quantum Lorentz groups. Int J Math, 1997, 8(7): 959-997

[9]

LiB R. Operator Algebras. Beijing: Science Press, 1992 (in Chinese)

[10]

LiuM, JiangL N. The Gelfand-Naimark Theorem of commutative Hopf C*-algebras. J Beijing Inst Technol, 2006, 15(3): 374-378

[11]

LiuM, JiangL N, ZhangG S. A characterization for discrete quantum group. Bol Soc Parana Mat (3s), 2005, 23(1-2): 41-50

[12]

LiuM, JiangL N, ZhangG S. Pairing and quantum double of finite Hopf C*-algebras. Acta Math Sin (Engl Ser), 2007, 23(6): 1121-1128

[13]

LiuM, ZhangX. Quantum double constructions for compact quantum groups. Acta Math Sin (Engl Ser), 2013, 29(12): 2973-2982328 Ming LIU, Xia ZHANG

[14]

PedersenG K. C*-Algebras and Their Automorphism Groups. London, New York, San Francisco: Academic Press, 1979

[15]

Van DaeleA. An algebraic framework for group duality. Adv Math, 1998, 140:323-366

[16]

WoronowiczS L. Compact matrix pseudogroups. Comm Math Phys, 1987, 111: 613-665

[17]

WoronowiczS L. Compact quantum groups. In: Symétries Quantiques, les Houches, Session LXIV, 1995. Amsterdam: Elsevier, 1998, 845-884

[18]

ZhangX X, GuoM Z. The regular representation and regular covariant representation of crossed products of Woronowicz C*-algebras. Sci China Ser A, 2005, 48(9): 1245-1259

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (99KB)

864

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/