Stability of nonlinear Schrödinger equations on modulation spaces

Weichao GUO , Jiecheng CHEN

Front. Math. China ›› 2014, Vol. 9 ›› Issue (2) : 275 -301.

PDF (228KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (2) : 275 -301. DOI: 10.1007/s11464-014-0346-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Stability of nonlinear Schrödinger equations on modulation spaces

Author information +
History +
PDF (228KB)

Abstract

We consider the Cauchy problem for a family of Schrödinger equations with initial data in modulation spaces Mp,1s. We develop the existence, uniqueness, blowup criterion, stability of regularity, scattering theory, and stability theory.

Keywords

Schrödinger equation / blow-up rate / scattering / stability theory / stability of regularity / modulation space

Cite this article

Download citation ▾
Weichao GUO, Jiecheng CHEN. Stability of nonlinear Schrödinger equations on modulation spaces. Front. Math. China, 2014, 9(2): 275-301 DOI:10.1007/s11464-014-0346-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BényiA, GröchenigK, OkoudjouK A, RogersL G. Unimodular Fourier multiplier for modulation spaces. J Funct Anal, 2007, 246: 366-384

[2]

BényiA, OkoudjouK A. Local well-posedness of nonlinear dispersive equations on modulation spaces. Bull Lond Math Soc, 2009, 41: 549-558

[3]

CazenaveT. Semilinear Schrödinger Equations. Courant Lecture Notes in Math, Vol 10. Providence: Amer Math Soc, 2003

[4]

ChenJ C, FanD S, SunL J. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete Contin Dyn Syst, 2012, 32: 467-485

[5]

FeichtingerH G. Modulation spaces on locally compact Abelian group. Technical Report, University of Vienna, 1983; Proc Inter Conf on Wavelet and Applications. New Delhi: Allied Publishers, 2003, 99-140

[6]

KeelM, TaoT. Endpoint Strichartz estimates. Amer J Math, 1998, 120: 955-980

[7]

KenigC E, MerleF. Global well-posedness, scattering and blow-up for the energycritical, focusing, non-linear Schrödinger equation in the radial case. Invent Math, 2006, 166(3): 645-675

[8]

RuzhanskyM, SugimotoM, WangB X. Modulation spaces and nonlinear evolution equations. Progr Math, 2012, 301: 267-283

[9]

TaoT. Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, No 106. Providence: Amer Math Soc, 2006

[10]

TaoT, VisanM. Stability of energy-critical nonlinear Schrödinger equations in high dimensions. Electron J Differential Equations, 2005, 118: 1-28

[11]

TaoT, VisanM, ZhangX. The nonlinear Schrödinger equation with combined powertype nonlinearities. Comm Partial Differential Equations, 2007, 32: 1281-1343.

[12]

TriebelH. Theory of Function Spaces. Basel: Birkhäuser-Verlag, 1983

[13]

WangB X, HudzikH. The global Cauchy problem for the NLS and NLKG with small rough data. J Differential Equations, 2007, 232: 36-73

[14]

WangB X, ZhaoL F, GuoB L. Isometric decomposition operators, function spaces Ep,qλ and applications to nonlinear evolution equations. J Funct Anal, 2006, 233(1): 1-39

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (228KB)

901

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/