New point view of spectral gap in functional spaces for birth-death processes

Yutao MA , Yonghua MAO

Front. Math. China ›› 2014, Vol. 9 ›› Issue (3) : 523 -535.

PDF (138KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (3) : 523 -535. DOI: 10.1007/s11464-013-0276-z
RESEARCH ARTICLE
RESEARCH ARTICLE

New point view of spectral gap in functional spaces for birth-death processes

Author information +
History +
PDF (138KB)

Abstract

Constructing some proper functional spaces, we obtain the corresponding norm for the operator (-L)-1, and then, via spectral theory, we revisit two variational formulas of the spectral gap, given by M. F. Chen [Front. Math. China, 2010, 5(3): 379-515], for transient birth-death processes.

Keywords

Birth-death processes / Dirichlet first eigenvalue / variational formula / spectral theory / duality

Cite this article

Download citation ▾
Yutao MA, Yonghua MAO. New point view of spectral gap in functional spaces for birth-death processes. Front. Math. China, 2014, 9(3): 523-535 DOI:10.1007/s11464-013-0276-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenM-F. Estimation of spectral gap for Markov chains. Acta Math Sin (New Ser), 1996, 12(4): 337-360

[2]

ChenM-F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci Sin, Ser A, 1999, 42(8): 805-815

[3]

ChenM-F. Variational formulas and approximation theorems for the first eigenvalue. Sci China, Ser A, 2001, 44(4): 409-418

[4]

ChenM-F. From Markov Chains to Non-equilibrium Particle Systems. 2nd ed. Berlin: Springer, 2004

[5]

ChenM-F. Speed of stability for birth death processes. Front Math China, 2010, 5(3): 379-515

[6]

DjelloutH, WuL M. Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann Inst Henri Poincaré Probab Stat, 2011, 47(2): 450-465

[7]

KarlinS, McGregorJ. The classification of birth-death processes. Trans Amer Math Soc, 1957, 86(2): 366-400

[8]

LiuW, MaY-T. Spectral gap and convex concentration inequalities for birth-death processes. Ann Inst Henri Poincaré Probab Stat, 2009, 45(1): 58-69

[9]

MeynS P, TweedieR L. Markov Chains and Stochastic Stability. 3rd ed. Berlin: Springer-Verlag, 1996

[10]

YosidaY. Functional Analysis. 6th ed. Berlin: Springer-Verlag, 1999

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (138KB)

932

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/