Positive eigenvalue-eigenvector of nonlinear positive mappings

Yisheng SONG, Liqun QI

Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 181-199.

PDF(153 KB)
PDF(153 KB)
Front. Math. China ›› 2014, Vol. 9 ›› Issue (1) : 181-199. DOI: 10.1007/s11464-013-0258-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Positive eigenvalue-eigenvector of nonlinear positive mappings

Author information +
History +

Abstract

We show that an (eventually) strongly increasing and positively homogeneous mapping T defined on a Banach space can be turned into an Edelstein contraction with respect to Hilbert’s projective metric. By applying the Edelstein contraction theorem, a nonlinear version of the famous Krein-Rutman theorem is presented, and a simple iteration process {Tkx/ ||Tkx||}(xP+) is given for finding a positive eigenvector with positive eigenvalue of T. In particular, the eigenvalue problem of a nonnegative tensor A can be viewed as the fixed point problem of the Edelstein contraction with respect to Hilbert’s projective metric. As a result, the nonlinear Perron-Frobenius property of a nonnegative tensor A is reached easily.

Keywords

Nonnegative tensor / Edelstein contraction / strongly increasing / homogeneous mapping / eigenvalue-eigenvector

Cite this article

Download citation ▾
Yisheng SONG, Liqun QI. Positive eigenvalue-eigenvector of nonlinear positive mappings. Front Math Chin, 2014, 9(1): 181‒199 https://doi.org/10.1007/s11464-013-0258-1

References

[1]
Birkhoff G. Extensions of Jentzch’s theorem. Trans Amer Math Soc, 1957, 85: 219-227
[2]
Bushell P J. On the projective contraction ratio for positive linear mappings. J Lond Math Soc, 1973, 6: 256-258
CrossRef Google scholar
[3]
Bushell P J. Hilbert’s metric and positive contraction mappings in a Banach space. Arch Rat Mech Anal, 1973, 52: 330-338
CrossRef Google scholar
[4]
Bushell P J. The Cayley-Hilbert metric and positive operators. Linear Algebra Appl, 1986, 84: 271-280
CrossRef Google scholar
[5]
Chang K C. A nonlinear Krein Rutman theorem. J Syst Sci Complex, 2009, 22(4): 542-554
CrossRef Google scholar
[6]
Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520
CrossRef Google scholar
[7]
Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32(3): 806-819
CrossRef Google scholar
[8]
Deimling K. Nonlinear Functional Analysis. New York: Springer-Verlag, 1988
[9]
Edelstein M. On fixed and periodic points under contractive mappings. J Lond Math Soc, 1962, 37: 74-79
CrossRef Google scholar
[10]
Friedland S, Gauber S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438(2): 738-749
CrossRef Google scholar
[11]
Hilbert D. Über die gerade Linie als kürzeste Verbindung zweier Punkte. Math Ann, 1895, 46: 91-96
CrossRef Google scholar
[12]
Hu S, Huang Z, Qi L. Finding the spectral radius of a nonnegative tensor. Department of Applied Mathematics, The Hong Kong Polytechnic University. 2010, preprint
[13]
Huang M J, Huang C Y, Tsai T M. Applications of Hilbert’s projective metric to a class of positive nonlinear operators. Linear Algebra Appl, 2006, 413: 202-211
CrossRef Google scholar
[14]
Huang M J, Huang C Y, Tsai T M. Eigenvalue problems and fixed point theorems for a class of positive nonlinear operators. Math Z, 2007, 257: 581-595
CrossRef Google scholar
[15]
Kohlberg E. The Perron-Frobenius theorem without additivity. J Math Economics, 1982, 10: 299-303
CrossRef Google scholar
[16]
Kohlberg E, Pratt J W. The contraction mapping approach to the Perron-Frobenius theorem: Why Hilbert’s metric? Math Oper Res, 1982, 7: 198-210
CrossRef Google scholar
[17]
Krause U. Perron’s stability theorem for nonlinear mappings. J Math Economics, 1986, 15: 275-282
CrossRef Google scholar
[18]
Lim L H. Singular values and eigenvalues of tensors: A variational approach. In: Proc 1st IEEE International Workshop on Computational Advances of Multi-tensor Adaptive Processing, Dec 13-15, 2005. 2005, 129-132
[19]
Mahadevan R. A note on a non-linear Krein-Rutman theorem. Nonlinear Anal, 2007, 67: 3084-3090
CrossRef Google scholar
[20]
Nussbaum R D. Hilbert’s Projective Metric and Iterated Nonlinear Maps. Mem Amer Math Soc, No 391. Providence: Amer Math Soc, 1988
[21]
Nussbaum R D. Iterated Nonlinear Maps and Hilbert’s Projective Metric, II. Mem Amer Math Soc, No 401. Providence: Amer Math Soc, 1989
[22]
Ogiwara T. Nonlinear Perron-Frobenius problem for order-preserving mappings, I. Proc Japan Acad Ser A Math Sci, 1993, 69: 312-316
CrossRef Google scholar
[23]
Ogiwara T. Nonlinear Perron-Frobenius problem for order-preserving mappings, II. Applications. Proc Japan Acad Ser A Math Sci, 1993, 69: 317-321
CrossRef Google scholar
[24]
Potter A J P. Applications of Hilbert’s projective metric to certain classes of non-homogeneous operators. Quart J Math Oxford, 1977, 28: 93-99
CrossRef Google scholar
[25]
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324
CrossRef Google scholar
[26]
Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363-1377
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(153 KB)

Accesses

Citations

Detail

Sections
Recommended

/