Diffusion bound and reducibility for discrete Schr?dinger equations with tangent potential

Shiwen ZHANG, Zhiyan ZHAO

PDF(203 KB)
PDF(203 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1213-1235. DOI: 10.1007/s11464-012-0241-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Diffusion bound and reducibility for discrete Schr?dinger equations with tangent potential

Author information +
History +

Abstract

In this paper, we consider the lattice Schr¨odinger equations iq ˙n(t)=tanπ(nα+x)qn(t)+ϵ(qn+1(t)+qn-1(t))+δυn(t)|qn(t)|2τ-2qn(t), with α satisfying a certain Diophantine condition, x/, and τ = 1 or 2, where υn(t) is a spatial localized real bounded potential satisfying |υn(t)|Ce-ρ|n|. We prove that the growth of H1 norm of the solution {qn(t)}n is at most logarithmic if the initial data {qn(0)}nH1 for ϵ sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., iq ˙n(t)=tanπ(nα+x)qn(t)+ϵ(qn+1(t)+qn-1(t))+δυn(θ0+tw)qn(t). Then the linear equation can be reduced to an autonomous equation for a.e. x and most values of the frequency vectors ω if ϵ and δ are sufficiently small.

Keywords

Tangent potential / reducibility / Sobolev norm / Birkhoff normal form

Cite this article

Download citation ▾
Shiwen ZHANG, Zhiyan ZHAO. Diffusion bound and reducibility for discrete Schrödinger equations with tangent potential. Front Math Chin, 2012, 7(6): 1213‒1235 https://doi.org/10.1007/s11464-012-0241-2

References

[1]
Bellissard J, Lima R, Scoppola E. Localization in ν-dimensional incommensurate structures. Comm Math Phys, 1983, 88: 465-477
CrossRef Google scholar
[2]
Bourgain J. Growth of Sobolev norms in linear Schr¨odinger equation with quasi-periodic potential. Comm Math Phys, 1999, 204: 207-247
CrossRef Google scholar
[3]
Bourgain J. On growth of Sobolev norms in linear Schr¨odinger equation with time dependent potential. J Anal Math, 1999, 77: 315-348
CrossRef Google scholar
[4]
Bourgain J, Wang Weimin. Anderson localization for time quasi-periodic random Schrödinger and wave equations. Comm Math Phys, 2004, 3: 429-466
[5]
Bourgain J, Wang Weimin. Diffusion bound for a nonlinear Schr¨odinger equation. In: Mathematical Aspect of Nonlinear Dispersive Equations. Ann of Math Stud, Vol 163. Princeton: Princeton University Press, 2007, 21-42
[6]
Devillard P, Souillard B J. Polynomially decaying transmission for the nonlinear Schrödinger equation in a random medium. J Stat Phys, 1986, 43: 423-439
CrossRef Google scholar
[7]
Eliasson L H, Kuksin S B. On reducibility of Schrödinger equations with quasi-periodic in time potentials. Comm Math Phys, 2009, 286: 125-135
CrossRef Google scholar
[8]
Fröhlich J, Spencer T, Wayne C E. Localization in disordered, nonlinear dynamical systems. J Stat Phys, 1986, 42: 247-274
CrossRef Google scholar
[9]
Geng Jiansheng, Viveros J, Yi Yingfei. Quasi-periodic breathers in Hamiltonian networks of long-range coupling. Phys D, 2008, 237: 2866-2892
CrossRef Google scholar
[10]
Geng Jiansheng, Zhao Zhiyan. Quasi-periodic solutions for One dimensional discrete nonlinear Schr¨odinger equations with tangent potential. Preprint
[11]
Howland J S. Stationary scattering theory for time-dependent Hamiltonians. Math Ann, 1974, 207: 315-335
CrossRef Google scholar
[12]
Jitomirskaya S. Ergodic Schrödinger operators (on one foot).Proc Sympos Pure Math, 2007, 76: 613-648
[13]
Nersesyan V. Growth of Sobolev norms and controllability of Schr¨odinger equation. Comm Math Phys, 2009, 290(1): 371-387
CrossRef Google scholar
[14]
Soffer A, Wang Weimin. Anderson localization for time periodic random Schr¨odinger operators. Comm Partial Differential Equations, 2003, 28: 333-347
CrossRef Google scholar
[15]
Wang Weimin. Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations. Comm Partial Differential Equations, 2008, 33: 2164-2179
CrossRef Google scholar
[16]
Wang Weimin. Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations. J Funct Anal, 2008, 254: 2926-2946
CrossRef Google scholar
[17]
Wang Weimin, Zhang Zhifei. Long time Anderson localization for the nonlinear random Schr¨odinger equation. J Stat Phys, 2008, 134(5-6): 953-968
[18]
Yajima K, Kitada H. Bound states and scattering states for time periodic Hamiltonians. Ann Inst H Poincar´e (A), 1983, 39(2): 145-157
[19]
You Jiangong. Perturbation of lower dimensional tori for Hamiltonian systems. J Differential Equations, 1999, 152: 1-29
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(203 KB)

Accesses

Citations

Detail

Sections
Recommended

/