Diffusion bound and reducibility for discrete Schrödinger equations with tangent potential

Shiwen Zhang , Zhiyan Zhao

Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1213 -1235.

PDF (203KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1213 -1235. DOI: 10.1007/s11464-012-0241-2
Research Article
RESEARCH ARTICLE

Diffusion bound and reducibility for discrete Schrödinger equations with tangent potential

Author information +
History +
PDF (203KB)

Abstract

In this paper, we consider the lattice Schrödinger equations $i\dot q_n (t) = \tan \pi (n\alpha + x)q_n (t) + \varepsilon \left( {q_{n + 1} (t) + q_{n - 1} (t)} \right) + \delta v_n (t)\left| {q_n (t)} \right|^{2\tau - 2} q_n (t),$ with α satisfying a certain Diophantine condition, x ε ℝ/ℤ, and τ = 1 or 2, where vn(t) is a spatial localized real bounded potential satisfying |vn(t)| ⩾ Ce−ρ|n|. We prove that the growth of H1 norm of the solution {qn(t)}nεℤ is at most logarithmic if the initial data {qn(0)}nεℤ ε H1 for ɛ sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., $i\dot q_n (t) = \tan \pi (n\alpha + x)q_n (t) + \varepsilon \left( {q_{n + 1} (t) + q_{n - 1} (t)} \right) + \delta v_n \left( {\theta ^0 + t\omega } \right)q_n \left( t \right).$ Then the linear equation can be reduced to an autonomous equation for a.e. x and most values of the frequency vectors ω if ɛ and δ are sufficiently small.

Keywords

Tangent potential / reducibility / Sobolev norm / Birkhoff normal form

Cite this article

Download citation ▾
Shiwen Zhang, Zhiyan Zhao. Diffusion bound and reducibility for discrete Schrödinger equations with tangent potential. Front. Math. China, 2012, 7(6): 1213-1235 DOI:10.1007/s11464-012-0241-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bellissard J., Lima R., Scoppola E. Localization in ν-dimensional incommensurate structures. Comm Math Phys, 1983, 88: 465-477

[2]

Bourgain J. Growth of Sobolev norms in linear Schrödinger equation with quasi-periodic potential. Comm Math Phys, 1999, 204: 207-247

[3]

Bourgain J. On growth of Sobolev norms in linear Schrödinger equation with time dependent potential. J Anal Math, 1999, 77: 315-348

[4]

Bourgain J., Wang W. Anderson localization for time quasi-periodic random Schrödinger and wave equations. Comm Math Phys, 2004, 3: 429-466

[5]

Bourgain J., Wang W. Diffusion bound for a nonlinear Schrödinger equation. Mathematical Aspect of Nonlinear Dispersive Equations, 2007, Princeton: Princeton University Press, 21-42

[6]

Devillard P., Souillard B. J. Polynomially decaying transmission for the nonlinear Schrödinger equation in a random medium. J Stat Phys, 1986, 43: 423-439

[7]

Eliasson L. H., Kuksin S. B. On reducibility of Schrödinger equations with quasi-periodic in time potentials. Comm Math Phys, 2009, 286: 125-135

[8]

Fröhlich J., Spencer T., Wayne C. E. Localization in disordered, nonlinear dynamical systems. J Stat Phys, 1986, 42: 247-274

[9]

Geng J., Viveros J., Yi Y. Quasi-periodic breathers in Hamiltonian networks of long-range coupling. Phys D, 2008, 237: 2866-2892

[10]

Geng Jiansheng, Zhao Zhiyan. Quasi-periodic solutions for One dimensional discrete nonlinear Schrödinger equations with tangent potential. Preprint

[11]

Howland J. S. Stationary scattering theory for time-dependent Hamiltonians. Math Ann, 1974, 207: 315-335

[12]

Jitomirskaya S. Ergodic Schrödinger operators (on one foot). Proc Sympos Pure Math, 2007, 76: 613-648

[13]

Nersesyan V. Growth of Sobolev norms and controllability of Schrödinger equation. Comm Math Phys, 2009, 290(1): 371-387

[14]

Soffer A., Wang W. Anderson localization for time periodic random Schrödinger operators. Comm Partial Differential Equations, 2003, 28: 333-347

[15]

Wang W. Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations. Comm Partial Differential Equations, 2008, 33: 2164-2179

[16]

Wang W. Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations. J Funct Anal, 2008, 254: 2926-2946

[17]

Wang W., Zhang Z. Long time Anderson localization for the nonlinear random Schrödinger equation. J Stat Phys, 2008, 134(5–6): 953-968

[18]

Yajima K., Kitada H. Bound states and scattering states for time periodic Hamiltonians. Ann Inst H Poincaré (A), 1983, 39(2): 145-157

[19]

You J. Perturbation of lower dimensional tori for Hamiltonian systems. J Differential Equations, 1999, 152: 1-29

AI Summary AI Mindmap
PDF (203KB)

782

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/