PDF
(203KB)
Abstract
In this paper, we consider the lattice Schrödinger equations $i\dot q_n (t) = \tan \pi (n\alpha + x)q_n (t) + \varepsilon \left( {q_{n + 1} (t) + q_{n - 1} (t)} \right) + \delta v_n (t)\left| {q_n (t)} \right|^{2\tau - 2} q_n (t),$ with α satisfying a certain Diophantine condition, x ε ℝ/ℤ, and τ = 1 or 2, where vn(t) is a spatial localized real bounded potential satisfying |vn(t)| ⩾ Ce−ρ|n|. We prove that the growth of H1 norm of the solution {qn(t)}nεℤ is at most logarithmic if the initial data {qn(0)}nεℤ ε H1 for ɛ sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., $i\dot q_n (t) = \tan \pi (n\alpha + x)q_n (t) + \varepsilon \left( {q_{n + 1} (t) + q_{n - 1} (t)} \right) + \delta v_n \left( {\theta ^0 + t\omega } \right)q_n \left( t \right).$ Then the linear equation can be reduced to an autonomous equation for a.e. x and most values of the frequency vectors ω if ɛ and δ are sufficiently small.
Keywords
Tangent potential
/
reducibility
/
Sobolev norm
/
Birkhoff normal form
Cite this article
Download citation ▾
Shiwen Zhang, Zhiyan Zhao.
Diffusion bound and reducibility for discrete Schrödinger equations with tangent potential.
Front. Math. China, 2012, 7(6): 1213-1235 DOI:10.1007/s11464-012-0241-2
| [1] |
Bellissard J., Lima R., Scoppola E. Localization in ν-dimensional incommensurate structures. Comm Math Phys, 1983, 88: 465-477
|
| [2] |
Bourgain J. Growth of Sobolev norms in linear Schrödinger equation with quasi-periodic potential. Comm Math Phys, 1999, 204: 207-247
|
| [3] |
Bourgain J. On growth of Sobolev norms in linear Schrödinger equation with time dependent potential. J Anal Math, 1999, 77: 315-348
|
| [4] |
Bourgain J., Wang W. Anderson localization for time quasi-periodic random Schrödinger and wave equations. Comm Math Phys, 2004, 3: 429-466
|
| [5] |
Bourgain J., Wang W. Diffusion bound for a nonlinear Schrödinger equation. Mathematical Aspect of Nonlinear Dispersive Equations, 2007, Princeton: Princeton University Press, 21-42
|
| [6] |
Devillard P., Souillard B. J. Polynomially decaying transmission for the nonlinear Schrödinger equation in a random medium. J Stat Phys, 1986, 43: 423-439
|
| [7] |
Eliasson L. H., Kuksin S. B. On reducibility of Schrödinger equations with quasi-periodic in time potentials. Comm Math Phys, 2009, 286: 125-135
|
| [8] |
Fröhlich J., Spencer T., Wayne C. E. Localization in disordered, nonlinear dynamical systems. J Stat Phys, 1986, 42: 247-274
|
| [9] |
Geng J., Viveros J., Yi Y. Quasi-periodic breathers in Hamiltonian networks of long-range coupling. Phys D, 2008, 237: 2866-2892
|
| [10] |
Geng Jiansheng, Zhao Zhiyan. Quasi-periodic solutions for One dimensional discrete nonlinear Schrödinger equations with tangent potential. Preprint
|
| [11] |
Howland J. S. Stationary scattering theory for time-dependent Hamiltonians. Math Ann, 1974, 207: 315-335
|
| [12] |
Jitomirskaya S. Ergodic Schrödinger operators (on one foot). Proc Sympos Pure Math, 2007, 76: 613-648
|
| [13] |
Nersesyan V. Growth of Sobolev norms and controllability of Schrödinger equation. Comm Math Phys, 2009, 290(1): 371-387
|
| [14] |
Soffer A., Wang W. Anderson localization for time periodic random Schrödinger operators. Comm Partial Differential Equations, 2003, 28: 333-347
|
| [15] |
Wang W. Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations. Comm Partial Differential Equations, 2008, 33: 2164-2179
|
| [16] |
Wang W. Bounded Sobolev norms for linear Schrödinger equations under resonant perturbations. J Funct Anal, 2008, 254: 2926-2946
|
| [17] |
Wang W., Zhang Z. Long time Anderson localization for the nonlinear random Schrödinger equation. J Stat Phys, 2008, 134(5–6): 953-968
|
| [18] |
Yajima K., Kitada H. Bound states and scattering states for time periodic Hamiltonians. Ann Inst H Poincaré (A), 1983, 39(2): 145-157
|
| [19] |
You J. Perturbation of lower dimensional tori for Hamiltonian systems. J Differential Equations, 1999, 152: 1-29
|