Derivations for even part of finite-dimensional modular Lie superalgebra $\tilde \Omega $

Zhu Wei , Yongzheng Zhang

Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1169 -1194.

PDF (190KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1169 -1194. DOI: 10.1007/s11464-012-0234-1
Research Article
RESEARCH ARTICLE

Derivations for even part of finite-dimensional modular Lie superalgebra $\tilde \Omega $

Author information +
History +
PDF (190KB)

Abstract

Y. Z. Zhang and Q. C. Zhang [J. Algebra, 2009, 321: 3601–3619] constructed a new family of finite-dimensional modular Lie superalgebra $\tilde \Omega $. Let Ω denote the even part of the Lie superalgebra $\tilde \Omega $.We first give the generator sets of the Lie algebra Ω. Then, we reduce the derivation of Ω to a certain form. With the reduced derivation and a torus of Ω, we determine the derivation algebra of Ω.

Keywords

Modular Lie superalgebra / derivation algebra / torus

Cite this article

Download citation ▾
Zhu Wei, Yongzheng Zhang. Derivations for even part of finite-dimensional modular Lie superalgebra $\tilde \Omega $. Front. Math. China, 2012, 7(6): 1169-1194 DOI:10.1007/s11464-012-0234-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Block R. E., Wilson R. L. The simple Lie p-algebras of rank two. Ann Math, 1982, 115: 93-168

[2]

Kochetkov Y., Leites D. Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group. Contemp Math, 1992, 131(2): 59-67

[3]

Liu W. D., Zhang Y. Z. Infinite-dimensional modular odd Hamiltonian Lie superalgebras. Comm Algebra, 2004, 32(6): 2341-2357

[4]

Liu W D, Zhang Y Z. Derivations for the even parts of modular Lie superalgebras W and S of Cartan type. arXive: math.R.A/0507521

[5]

Liu W. D., Zhang Y. Z., Wang X. L. The derivation algebra of the Cartan type Lie superalgebra HO. J Algebra, 2004, 273: 176-205

[6]

Petrogradski V. M. Identities in the enveloping algebras for modular Lie superalgebras. J Algebra, 1992, 145: 1-21

[7]

Seligman G. B. Modular Lie algebras, 1967, New York: Springer-Verlag

[8]

Strade H., Farnsteiner R. Modular Lie Algebras and Their Representations. Monographs and Textbooks in pure and Applied Math, 1988, New York: Marcel Dekker, Inc

[9]

Wang Y., Zhang Y. Z. Derivation algebra Der(H) and central extensions of Lie superalgebras. Comm Algebra, 2004, 32: 4117-4131

[10]

Zhang Q. C., Zhang Y. Z. Derivation algebras of modular Lie superalgebras W and S of Cartan type. Acta Math Sci, 2000, 20(1): 137-144

[11]

Zhang Y. Z. ℤ-graded Lie superalgebras with depth one over fields of prime characteristic. Acta Math Sin (Engl Ser), 2002, 18(4): 687-700

[12]

Zhang Y. Z., Fu H. C. Finite-dimensional Hamiltonian Lie superalgebras. Comm Algebra, 2002, 30: 2651-2674

[13]

Zhang Y. Z., Zhang Q. C. The finite-dimensional modular Lie superalgebra Ω. J Algebra, 2009, 321: 3601-3619

AI Summary AI Mindmap
PDF (190KB)

658

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/