Manifolds with pinched 2-positive curvature operator

Gang Peng , Hongliang Shao

Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 873 -882.

PDF (138KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 873 -882. DOI: 10.1007/s11464-012-0221-6
Research Article
RESEARCH ARTICLE

Manifolds with pinched 2-positive curvature operator

Author information +
History +
PDF (138KB)

Abstract

In this paper, we show that any complete Riemannian manifold of dimension great than 2 must be compact if it has positive complex sectional curvature and δ-pinched 2-positive curvature operator, namely, the sum of the two smallest eigenvalues of curvature operator are bounded below by δ·scal > 0. If we relax the restriction of positivity of complex sectional curvature to nonnegativity, we can also show that the manifold is compact under the additional condition of positive asymptotic volume ratio.

Keywords

δ-pinched 2-positive curvature operator / complex sectional curvature / asymptotic volume ratio

Cite this article

Download citation ▾
Gang Peng, Hongliang Shao. Manifolds with pinched 2-positive curvature operator. Front. Math. China, 2012, 7(5): 873-882 DOI:10.1007/s11464-012-0221-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Böhm C., Wilking B. Manifolds with positive curvature operators are space forms. Ann Math, 2008, 167: 1079-1097

[2]

Brendle S. A generalization of Hamilton’s differential Harnack inequality for the Ricci flow. arXiv: 0707.2192v2

[3]

Brendle S., Schoen R. Manifolds with 1/4-pinched curvature are space forms. J Amer Math Soc, 2009, 22: 287-307

[4]

Brendle S, Schoen R. Sphere theorem in geometry. arXiv: 0904.2604v1

[5]

Cabezas-Rivas E, Wilking B. How to produce a Ricci flow via Cheeger-Gromoll exhaustion. arXiv: 11070606v3

[6]

Carrillo J, Ni L. Sharp logarithmic Sobolev inequalities on gradient solitons and applications. arXiv: 0806.2417

[7]

Cheeger J., Ebin D. Comparison Theorems in Riemannian Geometry, 1975, Amsterdam: North-Holland

[8]

Chen B. L., Zhu X. P. Complete Riemannian manifolds with pointwise pinched curvature. Invent Math, 2000, 140(2): 423-452

[9]

Chow B., Chu S. C., Glickenstein D., Guenther C., Isenberg J., Ivey T., Knopf D., Lu P., Luo F., Ni L. The Ricci Flow: Techniques and Applications. Part II: Analytic Aspects. Mathematical Surveys and Monographs, 144, 2008, Providence: Amer Math Soc

[10]

Chow B., Lu P., Ni L. Hamilton’s Ricci Flow. Lectures in Contemporary Mathematics, 3, 2006, Beijing: Science Press; Graduate Studies in Mathematics, 77

[11]

Hamilton R. S. Three-manifolds with positive Ricci curvature. J Differential Geom, 1982, 24(2): 255-306

[12]

Hamilton R. S. Convex hypersufaces with pinched second fundamental form. Comm Anal Geom, 1994, 2(1): 167-172

[13]

Hamilton R. S. Formation of singularities in the Ricci flow. Collected Papers on Ricci Flow. Series in Geometry and Topology, 37, 2003, Somerville: International Press, 1-117

[14]

Huisken G. Ricci deformation of the metric on a Riemannian manifold. J Differential Geom, 1985, 21: 47-62

[15]

Ma L., Cheng L. On the conditions to control curvature tensors of Ricci flow. Ann Global Anal Geom, 2010, 37(4): 403-411

[16]

Ni L. Ancient solutions to Kähler-Ricci flow. Math Res Lett, 2005, 12(5–6): 633-653

[17]

Ni L, Wolfson J. Positive complex sectional curvature Ricci flow and the differential sphere theorem. arXiv: 0706.0332v1

[18]

Ni L., Wu B. Q. Complete manifolds with nonnegative curvature operator. Proc Amer Math Soc, 2007, 135: 3021-3028

[19]

Perelman G. The entropy formula for the Ricci flow and its geometric application. arXiv: math/0211159

[20]

Petrunin A., Tuschmann W. Asymptotical flatness and cone structure at infinity. Math Ann, 2001, 321: 775-788

[21]

Schulze F, Simon M. Expanding solitons with non-negative curvature operator coming out of cones. arXiv: 1008.1408v1

[22]

Shi W. X. Deforming the metric on complete Riemannian manifolds. J Differential Geom, 1989, 30: 223-301

[23]

Simon M. Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded from below. arXiv: 0903.2142

AI Summary AI Mindmap
PDF (138KB)

887

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/