Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces

Jiawang Nie

Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 321-346.

PDF(259 KB)
PDF(259 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 321-346. DOI: 10.1007/s11464-012-0187-4
Research Article
RESEARCH ARTICLE

Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces

Author information +
History +

Abstract

This paper studies the problem of minimizing a homogeneous polynomial (form) f(x) over the unit sphere $\mathbb{S}^{n - 1} = \left\{ {x \in \mathbb{R}^n :\left\| x \right\|_2 = 1} \right\}$. The problem is NP-hard when f(x) has degree 3 or higher. Denote by fmin (resp. fmax) the minimum (resp. maximum) value of f(x) on $\mathbb{S}^{n - 1}$. First, when f(x) is an even form of degree 2d, we study the standard sum of squares (SOS) relaxation for finding a lower bound of the minimum fmin: $\max \gamma s.t. f\left( x \right) - \gamma \cdot \left\| x \right\|_2^{2d} is SOS.$ Let fsos be the above optimal value. Then we show that for all n ⩾ 2d, $1 \leqslant \frac{{f_{\max } - f_{sos} }}{{f_{\max } - f_{\min } }} \leqslant C(d)\sqrt {\left( {_{2d}^n } \right)} .$ Here, the constant C(d) is independent of n. Second, when f(x) is a multi-form and $\mathbb{S}^{n - 1}$ becomes a multi-unit sphere, we generalize the above SOS relaxation and prove a similar bound. Third, when f(x) is sparse, we prove an improved bound depending on its sparsity pattern; when f(x) is odd, we formulate the problem equivalently as minimizing a certain even form, and prove a similar bound. Last, for minimizing f(x) over a hypersurface H(g) = {x ∈ ℝn: g(x) = 1} defined by a positive definite form g(x), we generalize the above SOS relaxation and prove a similar bound.

Keywords

Approximation bound / form / hypersurface / L2-norm / G-norm / multi-form / polynomial / semidefinite programming / sum of squares

Cite this article

Download citation ▾
Jiawang Nie. Sum of squares methods for minimizing polynomial forms over spheres and hypersurfaces. Front. Math. China, 2012, 7(2): 321‒346 https://doi.org/10.1007/s11464-012-0187-4

References

[1.]
Blekherman G. There are significantly more nonnegative polynomials than sums of squares. Israel J Math, 2006, 153: 355-380
CrossRef Google scholar
[2.]
Faybusovich L. Floudas C., Pardalos P. Global optimization of homogeneous polynomials on the simplex and on the sphere. Frontiers in Global Optimization. Nonconvex Optim Appl, Vol 74, 2004, Boston: Kluwer Academic Publishers, 109-121
[3.]
Hurwitz A. Über den Vergleich des arithmetischen und des geometrischen. Mittels J Reine Angew Math, 1891, 108: 266-268
[4.]
Kojima M., Kim S., Waki H. Sparsity in sums of squares of polynomials. Math Program, 2005, 103(1): 45-62
CrossRef Google scholar
[5.]
Lasserre J. Global optimization with polynomials and the problem of moments. SIAM J Optim, 2001, 11(3): 796-817
CrossRef Google scholar
[6.]
Ling C., Nie J., Qi L., Ye Y. Bi-quadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J Optim, 2009, 20(3): 1286-1310
CrossRef Google scholar
[7.]
Nesterov Y. Random walk in a simplex and quadratic optimization over convex polytopes, 2003, Louvainla-Neuve, Belgium: CORE, Catholic University of Louvain
[8.]
Nie J., Demmel J. Sparse SOS relaxations for minimizing functions that are summations of small polynomials. SIAM J Optim, 2008, 19(4): 1534-1558
CrossRef Google scholar
[9.]
Parrilo P. Semidefinite Programming relaxations for semialgebraic problems. Math Program, Ser B, 2003, 96(2): 293-320
CrossRef Google scholar
[10.]
Parrilo P. Exploiting structure in sum of squares programs. In: Proceedings for the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, 2003. 2004, 4664–4669
[11.]
Parrilo P., Sturmfels B. Basu S., Gonzalez-Vega L. Minimizing polynomial functions. Proceedings of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science (March 2001), 2003, Providence: Amer Math Soc, 83-100
[12.]
Reznick B. Forms derived from the arithmetic-geometric inequality. Math Ann, 1989, 283: 431-464
CrossRef Google scholar
[13.]
Reznick B. Some concrete aspects of Hilbert’s 17th problem. Contem Math, Vol 253, 2000, Providence: Amer Math Soc, 251-272
[14.]
Wolkowicz H., Saigal R., Vandenberghe L. Handbook of Semidefinite Programming: Theory, Algorithms, and Applications. International Series in Operations Research & Management Science, 27, 2000, Boston: Kluwer Academic Publishers
AI Summary AI Mindmap
PDF(259 KB)

Accesses

Citations

Detail

Sections
Recommended

/