Generate gene expression profile from high-throughput sequencing data

Hui Liu , Zhichao Jiang , Xiangzhong Fang , Hanjiang Fu , Xiaofei Zheng , Lei Cha , Wuju Li

Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1131 -1145.

PDF (214KB)
Front. Math. China ›› 2011, Vol. 6 ›› Issue (6) : 1131 -1145. DOI: 10.1007/s11464-011-0123-z
Research Article
RESEARCH ARTICLE

Generate gene expression profile from high-throughput sequencing data

Author information +
History +
PDF (214KB)

Abstract

This work presents two methods, the Least-square and Bayesian method, to solve the multiple mapping problem in extracting gene expression profiles through the next-generation sequencing. We parallel the tag sequences to genome, and partition them to improving the methods’ efficiency. The essential feature of these methods is that they can solve the multiple mapping problem between genes and short-reads, while generating almost the same estimation in single-mapping situation as the traditional approaches. These two methods are compared by simulation and a real example, which was generated from radiation-induced lung cancer cells (A549), through mapping short-reads to human ncRNA database. The results show that the Bayesian method, as realized by Gibbs sampler, is more efficient and robust than the Least-square method.

Keywords

Next-generation sequencing / multiple mapping / Gibbs sampler / least-square / Bayesian

Cite this article

Download citation ▾
Hui Liu, Zhichao Jiang, Xiangzhong Fang, Hanjiang Fu, Xiaofei Zheng, Lei Cha, Wuju Li. Generate gene expression profile from high-throughput sequencing data. Front. Math. China, 2011, 6(6): 1131-1145 DOI:10.1007/s11464-011-0123-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benjamini Y., Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Statist, 2001, 29 4 1165-1188

[2]

Cloonan N., Forrest A. R. R., Kolle G., Gardiner B. B. A., Faulkner G. J., Brown M. K., Taylor D. F., Steptoe A. L., Wani S., Bethel G. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods, 2008, 5 7 613-619

[3]

Faulkner G. J., Forrest A. R. R., Chalk A. M., Schroder K., Hayashizaki Y., Carninci P., Hume D. A., Grimmond S. M. A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics, 2008, 91 3 281-288

[4]

Metzker M. L. Sequencing technologies—the next generation. Nat Rev Genet, 2009, 11 1 31-46

[5]

Morin R. D., O’Connor M. D., Griffith M., Kuchenbauer F., Delaney A., Prabhu A. L., Zhao Y., McDonald H., Zeng T., Hirst M. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Research, 2008, 18 4 610

[6]

Mortazavi A., Williams B. A., McCue K., Schaeffer L., Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5 7 621-628

[7]

Ozsolak F., Milos P. M. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet, 2011, 12 2 87-98

[8]

Tanner M. A. Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 1996, Berlin: Springer-Verlag.

[9]

Wang W. C., Lin F. M., Chang W. C., Lin K. Y., Huang H. D., Lin N. S. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics, 2009, 10 1 328

[10]

Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 2009, 10 1 57-63

AI Summary AI Mindmap
PDF (214KB)

802

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/