On $\mathfrak{F}_h $-normal subgroups of finite groups

Xiuxian Feng , Wenbin Guo

Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 653 -664.

PDF (177KB)
Front. Math. China ›› 2010, Vol. 5 ›› Issue (4) : 653 -664. DOI: 10.1007/s11464-010-0062-0
Research Article
RESEARCH ARTICLE

On $\mathfrak{F}_h $-normal subgroups of finite groups

Author information +
History +
PDF (177KB)

Abstract

Let G be a finite group, and let $\mathfrak{F}$ be a formation of finite groups. We say that a subgroup H of G is $\mathfrak{F}_h $-normal in G if there exists a normal subgroup T of G such that HT is a normal Hall subgroup of G and (HT)HG/HG is contained in the $\mathfrak{F}$-hypercenter $Z_\infty ^\mathfrak{F} $ (G/HG) of G/HG. In this paper, we obtain some results about the $\mathfrak{F}_h $-normal subgroups and then use them to study the structure of finite groups.

Keywords

Finite group / $\mathfrak{F}_h$-normal subgroup / Sylow subgroup / maximal subgroup / 2-maximal subgroup

Cite this article

Download citation ▾
Xiuxian Feng, Wenbin Guo. On $\mathfrak{F}_h $-normal subgroups of finite groups. Front. Math. China, 2010, 5(4): 653-664 DOI:10.1007/s11464-010-0062-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alsheik A. Y., Jaraden J. J., Skiba A. N. On Uc-normal subgroups of finite groups. Algebra Colloquium, 2007, 14: 25-36.

[2]

Guo W. The Theory of Classes of Groups, 2000, Beijing-New York-Dordrecht-Boston-London: Science Press/Kluwer Academic Publishers.

[3]

Guo W. On $\mathfrak{F}$-supplemented subgroups of finite group. Manuscripta Math, 2008, 127: 139-150.

[4]

Guo W., Shum K. P., Skiba A. N. G-covering subgroups systems for the classes of supersoluble and nilpotent groups. Israel J Math, 2003, 138: 125-138.

[5]

Guo X., Shum K. P. Cover-avoidance properties and the structure of finite groups. J Pure Appl Algebra, 2003, 181: 297-308.

[6]

Guo X., Shum K. P. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups. Arch Math, 2003, 80: 561-569.

[7]

Huppert B. Endliche Gruppen I, 1967, Berlin-Heidelberg-New York: Springer-Verlag.

[8]

Li D., Guo X. The influence of c-normality of subgroups on the structure of finite groups II. Comm Algebra, 1998, 26: 1913-1922.

[9]

Li D., Guo X. The influence of c-normality of subgroups on the structure of finite groups. J Pure Appl Algebra, 2000, 150: 53-60.

[10]

Miao L., Guo W. On c-supplemented primary subgroups of finite groups. Proc of F Scorina Gomel State Univ, 2004, 6(27): 3-10.

[11]

Ramadan M. Influence of normality on maximal subgroups of Sylow subgroups of a finite group. Acta Math Hungar, 1992, 59: 107-110.

[12]

Robinson D. J. S. A Course in the Theory of Groups, 1982, New York: Springer.

[13]

Shemetkov L. A. Formations of Finite Groups, 1978, Moscow: Nauka.

[14]

Shemetkov L. A., Skiba A. N. Formations of Algebraic Systems, 1989, Moscow: Nauka.

[15]

Wang Y. c-Normality of groups and its properties. J Algebra, 1996, 180: 954-965.

[16]

Wei H. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups. Comm Algebra, 2001, 29: 2193-2200.

[17]

Yang N., Guo W. On $\mathfrak{F}_n $-supplemented subgroups of finite groups. Asian-European J of Math, 2008, 1(4): 619-629.

AI Summary AI Mindmap
PDF (177KB)

878

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/